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Abstract. A cloud-based re-encryption scheme allows a semi-trusted
cloud proxy to convert a ciphertext under delegator’s public-key into
a ciphertext of delegatee’s. However, for an untrusted cloud proxy, as
the re-encryption program was outsourced on the cloud, the cloud can
debug the program and might have illegal activities in practice, such as
monitoring the program executing, returning an incorrect re-encryption
ciphertext, or colluding with the participants to obtain the sensitive infor-
mation. In this work, we propose a construction of cloud-based verifiable
re-encryption by incorporating new cryptographic primitives of indistin-
guishability obfuscation and puncturable pseudorandom functions, which
can achieve the master-secret security even if the proxy colludes with the
delegatee. Furthermore, our scheme can provide the white-box security in
re-encryption procedure to implement the sensitive-data protection in the
presence of white-box access, and it resists on chosen-ciphertext attacks
in both the first-level encryption and the second-level encryption. The
decryption is very efficient since it only requires several symmetric PRF
operations, which can be deployed and applied in the light-weight secu-
rity device such as Mobile Phones (MPs), Wireless Body Area Networks
(WBANs) and nodes in Internet-of-Things (IoTs).

Keywords: · Data sharing · E-mail forwarding · White-box access· Re-
encryption· Indistinguishability obfuscation· Puncturable PRF.

? This work is supported by the National Natural Science Foundation of China (
61672010, 61702168), the open research project of The Hubei Key Laboratory of
Intelligent Geo-Information Processing (KLIGIP-2017A11), and the fund of Hubei
Key Laboratory of Transportation Internet of Things (WHUTIOT-2017B001).



2 M. Zhang et al.

1 Introduction

Proxy re-encryption (PRE), initially introduced by Blaze et al. [4], allows a
semi-trusted proxy to convert a ciphertext under the delegator’s public-key into
a ciphertext of the delegatee, without observing the underlying plaintext and
the secret key of either delegator or delegatee. In traditional PRE schemes, a
proxy is modeled as a semi-trusted server, who should execute the functionality
of re-encryption honestly. However, it may not be suitable for some applications,
e.g., electronic mail forwarding, and secure cloud-based data sharing.

Email cloud server

rkA-B

BobAlice

ctA
ctB

(1)

(2)

(3)

(4)ReEnc

Fig. 1. Scenario of encrypted email forwarding

Consider encrypted email-forwarding as an example which is depicted in Fig.
1. An encrypted email is sent to user Alice but unfortunately she is on vacation
and hence, cannot read the email. She can set an automatic forwarding func-
tionality in the cloud email server. If Alice forwards an encrypted email to Bob
directly, then Bob could not read the encrypted email correctly since the email
was indeed encrypted by Alice’s public-key. In order to allow Bob to decrypt and
read the encrypted email, a salutary approach is to specify and create a re-key
rkA→B by Alice and sends to the mail server. When Bob requests the email
from the mail server, the server can convert the encrypted mail of Alice into a
re-encrypted email of Bob using rkA→B . However, as the cloud-based mail server
might be conscious and malicious, and it may return a fake email, or produce
a re-encryption email but not what user Bob needed. Hence, it is mandatory to
check and verify the correctness of a re-encrypted email ciphertext.

We consider an encrypted data-sharing scenario in cloud environments, in
which the cloud server can perform the data-sharing procedure and also attempts
to obtain more sensitive information. Additionally, we allow the cloud to execute
the data-sharing program in a white-box access model such that it can debug
the program, set the breakpoints and monitor the memories or variables during
the executing.

Our contribution and techniques. In this work, we explore a verifiable
cloud-based proxy re-encryption that employs the primitives of indistinguisha-
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bility obfuscation iO and puncturable pseudorandom functions. Our scheme can
be used in the secure and sensitive data-sharing in cloud system while keeping
the confidentiality of the sensitive information. Besides the security of general
proxy re-encryption, our contribution is benefit as follows:

– The scheme reinforces the master secret-key security so that the adversary
(i.e., a dishonest cloud server) cannot obtain the master secret-key of the
sender even if the cloud proxy colludes with the delegatee.

– The proposed scheme obtains the white-box access security for the cloud
proxy. As the re-encryption program was executed in the cloud, to obtain
more sensitive data in the program, the cloud can debug the re-encryption
program step-by-step, trace into the program, and monitor the memory and
register. We employ the program obfuscation technique to prevent the cloud
from watching and stealing the sensitive data embedded in the program.

– In order to avoid the cloud server providing a fake re-encryption transfor-
mation, we present a functionality of verifiability of the re-encryption to
ensure the consistency and correctness of the re-encryption procedure while
keeping the underlying sensitive information security (i.e., secret keys and
plaintexts).

– Our scheme gives a strong CCA security (i.e., resist on active attacks on
ciphertexts) to guarantee for two levels of encryptions. That is, the (original)
second-level encryption and the (transformed) first-level encryption are all
secure against adaptively chosen-ciphertext attacks.

Actually, program obfuscation can make an (outsourced) computer program
unintelligible while preserving its functionality, which provides an effective mech-
anism to securely and perfectly hide the sensitive data in outsourced program
even the program executer has access the program in a white-box manner, such
as debugging the program, tracing into the variables or setting the breakpoints.

We are now ready to describe our construction that employs the indistin-
guishability obfuscation. The setup algorithm at firsts picks up the puncturable
keys (k1, k2). Next, it creates the public key as an obfuscation version of a pro-
gram to perfectly hide the keys (k1, k2). Then the encryption algorithm can
call this obfuscated program to encrypt a cleartext as follows: Compute u =
F1(k1, (m, r)) where r was a randomness, run the obfuscated program on input
r and u, and output the ciphertext ct as (α = H(m, r, u), β = F2(k2, α)⊕(m, r)),
where F1 and F2 are puncturable pseudorandom functions.

To avoid the cloud obtaining the clear re-encryption key rkr→j , the re-
encryption key rki→j will be created as an obfuscated program, which will
take as input a second-level ciphertext cti = (α, β) and outputs a transformed
first-level ciphertext ctj . The program first computes (m, r) = β ⊕ F2(k2, α),
u = F1(k1, (m, r)) and then checks whether α = H(m, r, u).

To invalidate the re-encryption key query from the adversary, we hardwire the
punctured PRF key to generate a randomness r′ for the re-encryption ciphertext
and then puncture the key using the challenge ciphertext. Due to the security
of puncturable PRF, we can invalidate the re-encryption key from the challenge
user to another. In order to verify the original ciphertext and the re-encryption
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ciphertext that holds the same message m, we compute u′ = F1(k1, (m, r
′)) and

run the obfuscated encryption circuit on r′ and u′, and output the re-encryption
ciphertext ĉt as (α′ = H(m, r′, u′), β′ = Fj(kj,2, α

′), u′).

The security proof of our scheme is proceeded by a sequence of indistinguish-
able games. At first, we use puncturable PRF keys (k1, k2) to create the obfus-
cated program PEnc and QREnc. Next, we employ the punctured programming
techniques to replace those normal evaluations of programs with hardwired and
randomly sampled value. In the final game, any p.p.t adversary A has negligible
advantage in guessing the underlying cleartext.

Related works. Blaze et al. [4] proposed the first bi-directional PRE scheme
based on ElGamal PKE scheme. Subsequently, Ateniese et al. [2], Canetti and
Hohenberger [7], Libert and Vergnud [24], and Chow et al. [9] proposed different
PRE schemes with various properties. Avoid employing the pairings, Shao and
Cao proposed a PRE scheme without pairing. However, Zhang et al. [8] pointed
out that it is not secure in the Libert and Vergnaud security model.

Hohenberger et al. [19] introduced a mechanism in how to securely obfuscate
the re-encryption functionality. Hanaoka et al. [18] and Isshiki et al. [21] pre-
sented the construction of chosen-ciphertext secure uni-directional PRE scheme,
respectively. Kirshanova [22] proposed a lattice-based PRE scheme. However,
none of those schemes consider the verifiability of re-encryption procedure.

Verifiable PRE proposed by Ohata et al.[26] is constructed by employing re-
encryption verification. Using this approach, the delegator splits his secret key
into tsk1 and tsk2 by a re-splittable threshold public key encryption[18]. Next,
it computes ψ = Enc(pkj , tsk1), and sends ψ to user j. Then, the proxy re-
encrypts the original ciphertext ci by using the re-encryption key rki→j(imply
tsk2). That is, it computes u2 = Dec(tsk2, ci) and sets the re-encrypted ci-

phertext as ĉj = Enc(p̂kj , u2||ci). The delegatee computes u2||ci = Dec(d̂kj , ĉj)
and u1 = Dec(dkj , ψ), and outputs m ← TCom(c, u1, u2). To achieve the re-
encryption verifiability, by augmenting the dedicated re-encryption algorithm.
On input (pki, skj , c, ĉ), it executes the first-level decryption algorithm to re-
cover the “embedded” second-level ciphetext c′, and checks whether c = c′.

Liu et al.[25] indicated that the Ohata et al.’s scheme can not resist against
collusion attack and they also proposed a new scheme to achieve CPA security
based on iO. More precisely, their approach is built on the key encapsulated
mechanism. That is, an encryption of a message m using symmetric key kSE
and an encryption of kSE using the public key pk1, where kSE is the output of a
key extractor. Zhang et al.[28] presented a flexible and controllable obfuscated
multi-hop re-encryption in (somewhat inefficient) multilinear groups.

Paper organization. The rest of this paper is organized as follows. Section
2 reviews some preliminaries including mathematical notations, indistinguisha-
bility obfuscation and puncturable pseudo random functions. In Section 3, we
propose the model and security definition for verifiable PRE. In Section 4, we
present our concrete construction and give the security analysis. We provide the
practical deployment of secure data-sharing in Section 5 and draw the conclusion
in Section 6.



Cloud-based Data-Sharing from Indistinguishability Obfuscation 5

2 Preliminaries

Throughout of this paper, we use λ to denote the security parameter, and let
p.p.t denote a probabilistic polynomial-time algorithm (Turing Machine). For an
integer n, we write [n] to denote the set {1, 2, · · · , n}.

A negligible function µ(n) is a function that for all positive polynomial p
there exists a positive integer N s.t. for all n > N, µ(n) < 1/p(n). Let A be
an algorithm, and x be the input of A, the evaluation of the Turing machine
running the algorithm A on the input tape with the encodings of x is denoted
by y ← A(x) where the result y is the output of A. An algorithm A is said to
have oracle access to machine O if A can write an input for O on a special tape,
and tell the oracle to execute on that input and then write its output to the
tape, which is denoted by AO.

For any polynomial-size distinguisherD, the advantage δ = |Pr[D(Expt(1λ, 0))
= 1]−Pr[D(Expt(1λ, 1))]| is bounded by δ, we write as Expt(1λ, 0) ≈δ Expt(1λ, 1).
If δ is negligible in parameter λ, we call two distributions (experiments) indis-
tinguishable.

We now recall the notion of indistinguishability obfuscation (iO) and punc-
turable pseudorandom function and their security requirements.

Definition 1. (Indistinguishability Obfuscation (iO)). A uniform p.p.t al-
gorithm iO is called an indistinguishability obfuscator for a circuit class {Cλ}λ∈N

if the following conditions are satisfied:

– Correctness: For all security parameters λ ∈ N, for all C ∈ {Cλ} and all
inputs x ∈ {0, 1}poly(λ), it holds that,

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1 (1)

– Indistinguishability: For any p.p.t algorithm Samp and distinguisher D,
there exists a negligible function µ(·) such that the following holds, i.e., if

Pr[∀x,C0(x) = C1(x) : (C0, C1, aux)← Samp(1λ)] > 1− µ(·) (2)

we have,∣∣∣Pr
[
D(aux, iO(λ,C0)) = 1 : (C0, C1, aux)← Samp(1λ)

]
− Pr

[
D(aux, iO(λ,C1)) = 1 : (C0, C1, aux)← Samp(1λ)

]∣∣∣ ≤ µ(λ) (3)

where aux is the auxiliary information output by the algorithms in the sys-
tem.

Definition 2. (Puncturable Pseudorandom Function) A puncturable fam-
ily of PRFs F consisting of three Turing Machines (KeyF ,PuncF ,EvalF ), and
a pairs of computing functions n(·) and m(·), satisfies the following properties:
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– Functionality preserved under puncturing point: For every p.p.t al-

gorithm A that takes as input 1λ and outputs a set S ⊆ {0, 1}n(λ), for all
x /∈ S, we have,

Pr
[
Eval(k, x) = Eval(kS , x) : k ← KeyF (1λ), kS = PuncF (k, S)

]
= 1 (4)

– Pseudorandom at punctured points: For every p.p.t adversary (A1,A2)

such that A1 takes as input 1λ and outputs a set S ⊆ {0, 1}n(λ). For all
k ← KeyF (1λ), kS = PuncF (k, S), and x ∈ S, we have,∣∣∣Pr

[
A2(kS , x,Eval(k, x))

]
= 1 − Pr

[
A2(kS , x, Um(λ)

]
= 1
∣∣∣ ≤ µ(λ) (5)

where Um(λ) denotes the uniform distribution over m(λ) bits.

Remark 1. In order to simplify notation, in this paper, we write F (k, S) to stand
for EvalF (k, x) and k(S) for PuncF (k, S), respectively.

Puncturable PRFs can easily be constructed from GGMs PRFs[12] which
are based on one-way functions. The following lemma states that the statistical
injective PPRF can be constructed.

Lemma 1. [27] If one-way functions exist, then for all eciently computable func-
tions `(λ), m(λ) and e(λ) such that `(λ) ≥ 2m(λ) + e(λ), there exists a statisti-
cally injective puncturable PRF family with failure probability 1/2e(λ) that maps
`(λ) bits to m(λ) bits.

3 Models and Definitions

3.1 Algorithms and definitions of VPRE

Our syntax for verifiable proxy re-encryption (VPRE) roughly follows in the line
of [26] except that we generate an additional verifiable key in the encryption pro-
cess for the verifiability of re-encryption ciphertext. A single-hop unidirectional
VPRE comprises of the following six algorithms whose flowchart is described in
Fig. 2:

– KGen(1λ) → (pk, sk): Key generation algorithm is a polynomial algorithm
that takes the security parameter λ, and outputs public keys pk and secret
keys sk.

– Enc(pki,m) → (ct, vk): Original encryption algorithm takes the public key
pki, a message m and a randomness r and outputs an original second-level
ciphertext cti, and a verifiable key vk.

– RKey(ski, pkj)→ rki→j : Re-key generation algorithm takes the secret key of
user i, i.e., ski, and the public key pkj of user j, and outputs a re-key rki→j .

– REnc(rki→j , cti)→ ĉtj : Re-encryption algorithm takes the re-key rki→j and

a second-level ciphertext cti, and outputs a first-level ciphertext ĉtj .
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– Dec2(ski, cti) → m|⊥: Second-level decryption algorithm takes a secret key
ski, and an original second-level ciphertext cti, and outputs a message m or
the special symbol ⊥.

– Dec1(skj , ĉtj) → m|⊥: First-level decryption algorithm takes a secret key

skj and a first-level ciphertext ĉtj , and outputs a message m or ⊥, which
indicates that the cti is invalid.

Email cloud server

rkA-B

BobAlice

ctA
ctB

(1)

(2)

(3)

(4)ReEnc

BobAlice

(pkj,skj)KeyGen()(pki,ski)KeyGen()

Cloud proxy server

pkj

rkij =ReKey(ski,pkj)

cti=Enc (pki, m)

ctj=ReEnc (rkij, cti) m=Dec2 (skj, ctj)

m=Dec1 (ski, cti)

Fig. 2. Workflow of cloud-based verifiable proxy re-encryption

Let M be the message space. A VPRE scheme is consistent and correct if
for all messages m ∈ M and any key pairs (pki, ski), (pkj , skj)← KGen(1λ), the
following conditions hold:

1. The second-level decryption correctness:

Pr
[
Dec2(ski,Enc(pki,m)) 6= m

]
≤ µ(λ) (6)

2. The first-level decryption consistency:

Pr
[
Dec1

(
skj , REnc(RKey(ski, pkj), Enc(pki,m))

)
6= m

]
≤ µ(λ)

3.2 CCA security

We adopt the chosen-ciphertext attack (CCA) security of VPRE scheme that is
defined as follows.

Definition 3. (CCA Security for Second-level Ciphertext). A uni-directional
VPRE scheme is said to be CCA secure at second level if the probability is neg-
ligibly close to 1/2 for any p.p.t adversary A which is shown as follows
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Pr


b′ = b :

(pk∗, sk∗)← KGen(1λ), {(pkc, skc)← KGen(1λ)},
{(pkh, skh)← KGen(1λ))}, {rkc→∗ ← RKey(skc, pk∗)},
{rk∗→h ← RKey(sk∗, pkh)}, {rkh→∗ ← RKey(skh, pk∗)},
{rkh→c ← RKey(skh, pkc)}, {rkc→h ← RKey(skc, pkh)},
{rkh→h′ ← RKey(skh, pkh′)}, {rkc→c′ ← RKey(skc, pkc′)},
(m0,m1, aux)← AODec1

,ODec2
,OREnc

(
pk∗, {pkc, skc},

{pkh}, {rkc→∗}, {rkh→∗}, {rk∗→h},
{rkc→h}, {rkh→c}, {rkh→h′}, {rkc→c′}

)
,

b
R←− {0, 1}, ct∗ = Enc(pk∗,mb),

b′ ← AODec1
,ODec2

,OREnc(ct∗, aux)


≤ µ(λ)

In this case, aux is a state information held by A and (pk∗, sk∗) is the chal-
lenge user’s key pair generated by the challenger. For honest users, keys are
indicated by h or h′ and we indicate corrupt users by c or c′. The adversary is
given all re-encryption keys except for those that could re-encrypt the ciphertext
from the challenge one to the corrupt one. In the security experiment, A is said
to have advantage ε if this probability is at least 1/2 + ε.

In the above CCA security experiments, Oracles ODec1 ,ODec2 ,OREnc work as
follows:

– Re-encryption Oracle OREnc: for a re-encryption query (pki, pkj , cti), the
oracle responds follows: If (pki, cti) = (pk∗, ct∗i ) and pkj /∈ pkh, then the
oracle returns the special symbol ⊥ to A. Otherwise, the oracle answers
with REnc(RKey(ski, pkj), cti)).

– First-level Decryption Oracle ODec1 : For a first-level decryption query
(pki, ĉti), the oracle responds as follows: If A has required a re-encryption
query (pk∗, pki, ct∗i ) and obtained ĉti before, then the oracle searches the
tuple in the record table and returns the tuple to A. If the adversary A has
requested a re-encryption key query (pk∗, pki) previously and Dec1(ski, ĉti) ∈
{m0,m1}, then the oracle ansers with “test” to A. Otherwise, the oracle
answers with Dec1(ski, ĉti).

– Second-level Decryption Oracle ODec2 : For a second-level decryption
query (pki, cti), the oracle responds with Dec2(ski, cti), except for the chal-
lenge ciphertext. i.e., if (pki, cti) = (pk∗, ct∗i ), then the oracle answers with a
symbol ⊥.

In the security of first-level ciphertexts for uni-directional VPRE schemes, A
is allowed to have access to all the re-encryption keys in the definition. Since
all first-level ciphertexts cannot be re-encrypted, there is indeed no reason to
keep adversary from obtaining all honest to corrupt re-encryption keys. The
re-encryption oracle becomes futile because of all the re-encryption keys are
available to adversary A.
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Definition 4. (CCA Security for First-level Ciphertext). A single-hop
unidirectional VPRE scheme is said to be CCA secure at first-level if the proba-
bility is negligible for any p.p.t adversary A, where the challenge user’s key pair

(sk∗, pk∗) and the challenge ciphertext ĉt∗ are generated by the challenger, which
is shown as follows

Pr



b′ = b :

(pk∗, sk∗)← KGen(1λ), {(pkc, skc)← KGen(1λ)},
{(pkh, skh)← KGen(1λ))}, {rkc→∗ ← RKey(skc, pk∗)},
{rk∗→h ← RKey(sk∗, pkh)}, {rkh→∗ ← RKey(skh, pk∗)},
{rkh→c ← RKey(skh, pkc)}, {rkc→h ← RKey(skc, pkh)},
{rkh→h′ ← RKey(skh, pkh′)}, {rkc→c′ ← RKey(skc, pkc′)},
(m0,m1, skA, pkA)← AODec1

,ODec2

(
pk∗, {pkc, skc}, {pkh, skh},

{rkc→∗}, {rkh→∗}, {rk∗→h}, {rkc→h}, {rkh→c}, {rkh→h′}, {rkc→c′}
)
,

b
R←− {0, 1},

ct = Enc(pkA,mb), ĉt∗ = REnc(RKey(skA, pk∗), ct),

b′ ← AODec1
,ODec2 (ĉt∗)


≤ µ(λ)

Ohata et al.[26] introduces a new functionality for proxy re-encryption with
verifiability of re-encryption procedure. Ateniese et al.[2] defines the property for
unidirectional PRE schemes, i.e., master secret key security. We give the security
requirements of verifiable PRE with master-key security as follows:

Definition 5. (CCA-VPRE Security). A VPRE scheme is said to be CCA-
secure verifiable VPRE against master-key exposure if both the first-level encryp-
tion and the-second level encryption are CCA secure.

1. Master secret security. Master secret security captures the inability to
obtain the master secret key even if the cloud proxy and the delegatee col-
lude. More formally, the following probability should be negligible in security
parameter λ,

Pr

χ = sk∗ :

(pk∗, sk∗)← KGen(1λ),
{(pkc, skc)← KGen(1λ)},
{rkc→∗ ← RKey(skc, pk∗)},
{rk∗→c ← RKey(sk∗, pkc)},
χ← A

(
{pkc, skc}, {rkc→∗}, {rk∗→c}

)

 ≤ µ(λ)

2. Re-encryption verifiability. Re-encryption verifiability ensues that,
(a) If the adversary who obtains a re-encryption key rki→j and is given an

original (second-level) ciphertext cti, it can produce only a re-encrypted
ciphertext ĉtj that can decrypt the same message as the decryption result
of cti.

(b) If the adversary does not have the re-encryption key rki→j, then it cannot

create a valid re-encryption ciphertext ĉtj at all.
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Concretely, for any p.p.t adversary A, the following probability is negligible.

Pr


m′ 6= m∗ ∧m′ 6= ⊥ :

(pk∗, sk∗)← KGen(1λ), {(pkc, skc)← KGen(1λ)},
{(pkh, skh)← KGen(1λ))}, {rkc→∗ ← RKey(skc, pk∗)},
{rk∗→h ← RKey(sk∗, pkh)}, {rkh→∗ ← RKey(skh, pk∗)},
{rkh→c ← RKey(skh, pkc)}, {rkc→h ← RKey(skc, pkh)},
{rkh→h′ ← RKey(skh, pkh′)}, {rkc→c′ ← RKey(skc, pkc′)},
m← AODec1

,OREnc

(
pk∗, {pkc, skc}, {pkh}, {rkc→∗}, {rkh→∗},

{rk∗→h}, {rkc→h}, {rkh→c}, {rkh→h′}, {rkc→c′}
)
,

ct∗ = Enc(pk∗,m∗),

m′ ← AODec1
,ODec2 (ĉt∗, pkRj )


≤ µ(λ)

4 Proposed Construction

4.1 Main idea

We now describe the main idea of our scheme. The functionality of re-encryption
is easily realized that if it is allowed to decrypt the ciphertext and to re-encrypt
the underlying cleartext by the cloud proxy. However, we should guarantee that
the cloud proxy cannot gain any sensitive data during performing the transfor-
mation. That is,“decrypt-then-encrypt” procedure guarantees that be not able
to expose the secret key of the delegator, or the embedded cleartext.

Let the length of a message be `. Let F1 be a puncturable PRF that takes
input of (` + λ)-bit and outputs `δ-bit, and F2 be a puncturable PRF that
takes input of `α-bit and outputs (` + λ)-bit. Let H be a collision-resistant
cryptographic hash function that takes input of (`+ λ+ `δ)-bit and outputs the
size of `α-bit.

In our scheme, to protect the secret key of delegator from exposing from
the re-encryption key, we set the re-encryption key as the obfuscated program
by the use of indistinguishability obfuscation iO. To achieve the re-encryption
verifiability, we design the VPRE scheme by employing Sahai and Waters’ short
signature scheme[27]. Before executing the obfuscated circuit PEnc, it at first
evaluates the signature u = F1(k1, (m, r)) on message m and randomness r.

In the re-encryption circuit, we need to re-randomize the signature and ran-
domness for user j. To complete the security proof, we add the puncturable
PRF key k3 in the re-encryption circuit and generate the updated randomness
for re-encryption by using k3.

4.2 Our construction

The concrete construction of VPRE = (KGen,Enc,RKey,REnc,Dec1,Dec2) is de-
scribed as follows:



Cloud-based Data-Sharing from Indistinguishability Obfuscation 11

– KGen(1λ): The key generation algorithm at first chooses a puncturable key
k1 ← KeyF1

(1λ) and k2 ← KeyF2
(1λ). Next, it creates an obfuscation of

program Encrypt-Circuit as

PEnc ← iO(1λ, Encrypt-Circuit : [k1]) (7)

The circuit Encrypt-Circuit is formally defined in Fig. 3. This obfuscated
program, PEnc, servers as the public key, pk = PEnc, and the corresponding
secret key is sk = (k1, k2).

Encrypt-Circuit

Constant: puncturable PRF keys k1.

Input: message m ∈ {0, 1}`,
randomness r ∈ {0, 1}λ,

signature u ∈ {0, 1}`δ .
Procedure:
1. Compute α = H(u,m, r).
2. Compute β = F2(k2, α)⊕ (m, r).
3. Output ct = (α, β).

Fig. 3. Program of Encrypt-Circuit

– Enc(pk = PEnc,m ∈ {0, 1}`, r ∈ {0, 1}λ): The encryption algorithm at first
computes u = F1(k1, (m, r)). Next it produces an obfuscated program Γ vk,
which is defined in Fig. 4. It at random chooses r ∈ {0, 1}λ, and then runs
the obfuscated program PEnc on inputs r, m and u to obtain: (α, β) ←
PEnc(m, r, u). The output of second-level ciphertext is ct = (α, β).

Verify-key

Constants: puncturable PRF key k1.

Input: message m ∈ {0, 1}`,
randomness r ∈ {0, 1}λ,

signature u ∈ {0, 1}`δ .
Procedure:
Check f(u) = f(F1(k1, (m, r))). Output “accept” if true, “reject” otherwise.

Fig. 4. Program of Verify-key

– RKey(ski = (ki,1, ki,2), pkj = PEnc
j ): Let ski = (ki,1, ki,2) be the delegator’s

secret key, and pkj = PEnc
j be the public key of delegatee j. The re-key gener-

ation algorithm at random chooses a puncturable PRF key k3 ← KeyF3
(1λ),

and then produces an obfuscated program QREnc by obfuscating

QREnc ← iO
(
1λ, ReEnc-Circuit : [k1, k2, k3, iO(PEnc

j )]
)

(8)
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which is described in Fig. 5. The re-encryption key is set as rki→j = QREnc.

ReEnc-Circuit

Constants: puncturable PRF keys ki,1, ki,2: second-level secret key of user i,
k3: puncturable PRF key,

iO(PEnc
j ): public key of user j.

Input: cti = (αi, βi): second-level ciphertext
Procedure:
1. Compute (m, r) = F2(ki,2, αi)⊕ βi.
2. Compute u = F1(ki,1, (m, r)).
3. If αi 6= H(u,m, r), outputs ⊥ and aborts. Otherwise, continue to the next

steps.
4. Compute r′ = F3(k3, cti).
5. Compute u′ = F1(ki,1, (m, r

′)).
6. Evaluate iO(PEnc

j , λ)(m, r′, u′).
7. Output ctj = (α′, β′, u′)

Fig. 5. Program of Re-encryption Circuit

– REnc(rki→j = QREnc, cti = (αi, βi)): The re-encryption algorithm takes as
inputs cti of a second-level ciphertext of user i and a re-encryption key rki→j
which is an obfuscated program QREnc

i→j . It then runs the circuit QREnc
i→j (cti)

and outputs a first-level ciphertext ctj = (α′, β′, u′).

– Dec2(ski = (ki,1, ki,2), cti = (αi, βi)): The second-level decryption algorithm
takes as inputs a secret key sk and a ciphertext cti. At first it computes
(m, r) = F2(ki,2, αi) ⊕ βi. Next, it computes u = F1(ki,1, (m, r)) and then
checks the equation αi = H(u,m, r). If the equation does not hold, it outputs
⊥ and stops. Otherwise, it outputs m.

– Dec1(skj , ĉtj): The first-level decryption algorithm takes as inputs a se-

cret key skj and a first-level ciphertext ĉtj . At first it computes (m, r) =
F2(kj,2, α

′), and checks if vk(m, r, u′) = 1 and α = H(m, r, u′) = 1. Finally,
it outputs a message m if the equations hold or symbol ⊥ otherwise.

Correctness. At first, we ensure the correctness of decryption of the original
(second level) ciphertext. Actually, the second-level ciphertext has the form:
ct = (α, β) = (H(m, r, u), F2(k2, α) ⊕ (m, r)), and the secret key is (k1, k2).
When we decrypt the ciphertext, we calculate (m, r) = F2(k2, α) ⊕ β and u =
F1(k1, (m, r)). If the check α = H(m, r, u) holds, the result of decryption is valid.

Furthermore, we ensure the consistency of decryption of the (transformed)
first-level ciphertext. The transformed (first-level) re-encrypted ciphertext has
the form: ĉt = (α′, β′, u′) = (H(m, r′, u′), F2(kj,2, α

′⊕(m, r′)), Fi,1(ki,1, (m, r
′))),

and the secret key has the form: skj = (kj,1, kj,2). When decrypting a re-
encrypted first-level ciphertext, we will compute (m, r′) = F2(kj,2, α

′) ⊕ β′. If
the check vk(m, r′, u′) = 1 and α = H(m, r′, u′) hold, the result of this decryp-
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tion outputs the message m which satisfies the consistency of the second-level
ciphertext.

4.3 Proof of security

We use a series of games to prove the security of our scheme. In the sequence
of games, the first game is defined as the original experiment of second-level
CCA security. Then we show that any p.p.t adversary’s advantage in each game
must be negligibly close to the previous game and the adversary has negligible
advantage in the final game. We have the following theorem.

Theorem 1. Suppose that the indistinguishability obfuscation scheme is a se-
cure iO, F1 and F2 are secure puncturable PRFs, f(·) is a cryptographically
secure one-way function and H is modeled as a collision-resistant hash function,
the proposed VPRE scheme is CCA secure for the second-level encryption.

Proof. We give the proof that is based on a series of games as follows.
Expt0: The first game Expt0 is set as the original second-level CCA security

game instantiated in our construction, which works as follows.

1. The adversary A selectively gives the challenger the messages m∗.
2. The challenger C at random selects keys k1 ← KeyF1

(1λ), k2 ← KeyF2
(1λ), k3 ←

KeyF3
(1λ) and also picks a random coin b ∈ {0, 1}.

3. C computes u∗ = F1(k1, (m
∗, r∗)).

4. The challenger C creates PEnc ← iO(1λ, Encrypt-Circuit : [k1]) and sends
PEnc to the adversary A.

5. Phase-1 queries and response as follows in an adaptive manner:
(a) The challenger C generates the re-encryption key rki→j by callingQREnc ←

iO(1λ, ReEnc-Circuit : [k1, k2, k3, iO(PEnc
j )]) and returns QREnc to A.

(b) A asks the query for ciphertext ct to oracle OREnc.
(c) A requests the query for ciphertext ĉt to oracle ODec2 and re-encryption

ciphertext ct to oracle ODec1 .
6. The challenger C runs ct∗ ← iO(1λ, Encrypt-Circuit: [k1])(m∗, r∗, u∗),

and returns ct∗ to the adversary.
7. Phase-2 queries are the same as in Phase-1, except that, for the adversary
A, the following additional restrictions are satisfied:
(a) Cannot request a re-encryption query to tuple (pki∗ , pkj , ct∗) s.t. pkj ∈

pkc.
(b) Cannot request a decryption query to (pkk, ctk) so that ctk is the result

of a re-encryption query (pki∗ , pkk, ct∗).
(c) Cannot request the decryption query to tuple (pki∗ , ct∗)

8. The adversary A outputs a bit b′ and wins the game if b′ = b.

Expt1: The challenger C sets α∗ = H(m∗, r∗, u∗) and c̃t∗ = F2(k2, α
∗) ⊕

(m∗, r∗). It creates the obfuscated program of PEnc∗ as the obfuscation version
of Encrypt-circuit∗ defined in Fig. 6. By the iO security, no adversary can
distinguish Expt1 and Expt0.
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Encrypt-Circuit∗

Constants: puncturable PRF keys k2{α∗}, α∗ and c̃t∗.

Input: message m ∈ {0, 1}`,
randomness r ∈ {0, 1}λ,

signature u ∈ {0, 1}`δ .
Procedure:

1. If α∗ = H(m, r, u), output c̃t∗.
2. Else compute α = H(u,m, r).
3. Compute β = F2(k2, α)⊕ (m, r).
4. Output ct = (α, β).

Fig. 6. Program of Encrypt-Circuit∗

Expt2: C computes z∗ = f(F1(k1, (m
∗, r∗))) and sets vk as the obfuscation of

program Verify-key∗ defined in Fig. 7. It is easily to see that no adversary can
distinguish Expt2 and Expt1 by the security of indistinguishability obfuscation.

Verify-key∗

Constants: puncturable PRF key k1{m∗, r∗},
m∗ ∈ {0, 1}`,
r∗ ∈ {0, 1}λ,
z∗.

Input: message m ∈ {0, 1}`,
randomness r ∈ {0, 1}λ,

signature u ∈ {0, 1}`δ .
Procedure:

1. If (m, r) = (m∗, r∗),
Then, check whether f(u) = z∗.
Output “accept” if the equation holds,
and output “reject” otherwise.

2. Else, check if f(u) = f(F1(k1, (m, r))).
Output “accept” if the equation holds, and output “reject” otherwise.

Fig. 7. Program of Verify-key∗

Expt3: The challenger sets z∗ = f(y) for randomly selected y from {0, 1}`δ .
By the security of puncturable PRF, no adversary can distinguish Expt3 and
Expt2.

Expt4: The challenger C at first computes the output when ct∗ are input
to the re-encryption circuit QREnc∗

∗→j defined in Fig. 8. Here, it hardwires the

output ĉt∗ (i.e., re-encrypted ciphertext) to QREnc∗ . Next, it computes punctured
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keys k∗i,1{m∗, r∗}, k∗i,2{α∗} and k3{ct∗}. By the security of indistinguishability
obfuscation iO and the collision-resistance of hash function, it is easily to show
that no adversary can distinguish Expt4 and Expt3.

ReEnc-Circuit∗

Constants: punctuable PRF keys k∗i,1{m∗, r∗}, k∗i,2{α∗}(secret key of user i),
k3{ct∗} (puncturable PRF key),

iO(P Enc
j )(public key of user j),

ciphertext ĉt∗.
Input: cti.
Procedure:

1. If the input ciphertext is ct∗, then it outputs ĉt∗.
2. Compute (m, r) = F2(k∗i,2{α∗}, αi)⊕ βi.
3. Compute u = F1(k∗i,1{m∗, r∗}, (m, r)).
4. Check whether αi 6= H(u,m, r) holds. If not, output ⊥ and abort.
5. Compute r′ = F3(k3{ct∗}, cti) and u′ = F1(k∗i,1{m∗, r∗}, (m, r′))
6. Compute iO(PEnc

j , λ)(m, r′, u′).
7. Output ctj = (α′, β′, u′)

Fig. 8. Program of REnc-Circuit∗

Expt5: The challenger replaces the second component of the hardwired ci-
phertext to a random one. By the pseudorandom security in punctured points
of puncturable PRF, no adversary can distinguish Expt5 and Expt4.

Expt6: The challenger answers the re-encryption query (pki, pkj , cti) such
that pki = pk∗. It does as follows:

1. If the input ciphertext is ct∗, then output ĉt∗.
2. Compute (m, r) = F2(k∗i,2{α∗}, αi)⊕ βi.
3. Compute u = F1(k∗i,1{m∗, r∗}, (m, r)).
4. Check whether αi 6= H(u,m, r). If not, output ⊥ and abort.
5. Compute r′ = F3(k3{ct∗}, cti) and u′ = F1(k∗i,1{m∗, r∗}, (m, r′))
6. Compute iO(PEnc

j , λ)(m, r′, u′) and send the result to the adversary.

By the collision-resistant security of hash function, there does not exist any
adversary in distinguishing Expt6 and Expt5.

Expt7: The challenger C answers the first-level decryption query (pki, ĉti) as
follows.

1. Compute (m, r′) = F2(ki,2, αi)⊕ βi.
2. Check whether vk(m, r′, u′) and αi 6= H(m, r′, u′). Output ⊥ if fail.
3. Output m as the answer.

By the security of one-way function and collision-resistance of hash function,
there does not exist any adversary in distinguishing Expt7 and Expt6.
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Expt8: The challenger C answers the second-level decryption query (pki, ct)
such that pki = pk∗ as follows:

1. Compute (m, r) = F2(ki,2, αi)⊕ βi.
2. Compute u = F1(ki,1, (m, r)).
3. Check whether αi 6= H(u,m, r) holds. If not, outputs ⊥.
4. Return m as the answer.

By the collision-resistance of hash function, it is easily to show that no ad-
versary can distinguish Expt8 and Expt7.

Expt9: Replace F1(k1, (m
∗, r∗)) with a randomly and uniformly selected

value. By the security of puncturable PRF, no adversary can distinguish Expt9
from Expt8.

Expt10: The challenger C sets α∗ = t∗ for randomly selected t∗ ← {0, 1}`α .
By the security of puncturable PRF, no adversary can distinguish Expt10 and
Expt9.

Expt11: The challenger C at random chooses x∗ ← {0, 1}`+λ and sets (t∗, x∗)
as the challenge ciphertext.

Notice that, in Expt11, the challenge ciphertext ct∗ = (t∗, x∗) where t∗ and
x∗ are distributed uniformly, and thus, the adversary A has a negligible ad-
vantage in the second-level CCA-VPRE game. Therefore, the advantage of the
adversary in Expt0 is negligible in actual attack experiment. This completes the
proof of Theorem 1.

Theorem 2. If the obfuscation scheme is a secure indistinguishably obfuscator,
F1 and F2 are secure punctured PRFs, f(·) is a cryptographically secure one-
way function and H is a collision-resistant hash function, the proposed VPRE
scheme is CCA secure for the first-level encryption.

Proof. We also use a series of games that are proved to be indistinguishable as
follows.

Expt0: Expt0 is described as the first-level CCA experiment of VPRE scheme.
Expt1: This game is the same as Expt0, except that the re-encrypted ci-

phertext is set as (α′, β′, u′ = W ) for randomly selected W ∈ {0, 1}`δ . By the
security of puncturable PRF, it is easily to see that no adversary can distinguish
Expt1 and Expt0.

Expt2: This game is the same as Expt1, except that the re-encrypted cipher-
text is set as (α′ = U, β′,W ) for randomly selected U ∈ {0, 1}`α . By the security
of puncturable PRF and collision-resistance of hash function, no adversary can
distinguish Expt2 and Expt1.

Expt3: This game is the same as Expt1, except that the re-encrypted ci-
phertext is set as (U, β′ = V,W ) for randomly chosen V ∈ {0, 1}`+λ. By the
security of puncturable PRF, it is easily to show that no adversary is able to
distinguish Expt3 and Expt2.

By a series of hybrid arguments, it declares that a p.p.t adversary’s advan-
tage in the original security Expt0 can be at most negligibly greater than its
advantage in Expt3. We note that the advantage of the adversary in Expt3 is
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negligible in security parameter λ, since it provides no information on the coin
b and thus completes the proof of Theorem 2.

Theorem 3. Suppose that iO is a secure indistinguishability obfuscator in Def-
inition 1, then the proposed scheme is master secret-key secure.

Proof. Suppose that, in the VPRE scheme, the master secret-key ski is revealed
when the malicious cloud colludes with the delegatee j, then we can construct
an iO distinguisher B = (B1,B2) to distinguish the obfuscated circuits in the
circuit family. The deployment of B works as follows:

At first, B1 constructs a re-encryption key QREnc as in Fig. 5. We denote this
circuit as C0. Next, B1 constructs a re-encryption key QREnc∗ as in Fig. 8. We
denote this circuit as C1. Note that the functionality of these two circuits C0

and C1 are completely the same. B1 outputs (C0, C1) and aborts.
B2 is given iO(1λ, C∗) from the challenger C. That is, this iO(1λ, C∗) is either

iO(1λ, C0) or iO(1λ, C1). When the re-encryption key queried from the challenge
user to j by the adversaryA, B2 returns the iO(1λ, C∗) to A and receives a secret
key sk. If sk = sk∗, B2 decides that iO(1λ, C∗) is C0. Otherwise, B2 decicdes that
iO(1λ, C∗) is C1. Obviously, a p.p.t adversary can distinguish between C0 and
C1 which will lead the constructed algorithm B to break the indistinguishability
security of iO. As we employ the secure iO, we conclude that the propose VPRE
scheme satisfies the master secret-key security.

Theorem 4. Suppose that f(·) is a secure one-way function and iO is a se-
cure indistinguishability obfuscator, then the proposed VPRE scheme is verifiably
secure of re-encryption.

Proof. If there exists an adversary A who can against the verifiable security of
re-encryption, we can construct an algorithm B to break the security of one-way
function f .

At first, algorithm B sets a verify key circuit defined in Fig. 4. Next, B runs
PEnc to obtain a challenge ciphertext ct∗ = (α∗, β∗), and sends the tuple (ct∗, vk)
to adversary A. Later, A outputs ĉt = (α′, β′, σ). By the definition of B that
has computed σ such that f(σ) = y. We say that A will win if and only if (1)
m′ 6= m, (2) m′ 6= ⊥ and, (3) vk(m, r′, σ) = 1. If the one-way function f is
cryptographically secure, it is easily to show that no p.p.t adversary A in the
above equations with non-negligible advantage.

5 Deployment in Secure Data-Sharing in Cloud

In this section, we present a practical deployment of secure data-sharing that
empolys our scheme as the basic primitive.

Assume that user A wants to share his sensitive sports data or holiday photos
in his smart watch to his friend circle shown in Fig. 9. In order to keep the
privacy of the data, user A needs to encrypt the sensitive data with his own
public-key pkA and then stores ctA on the clouds[29]. When he is going to share
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the encrypted data, he can generate a re-encryption key for the friend group,
e.g., rkA→G1

, and requests the cloud server to perform the re-encryption program
to create the re-encrypted ciphertext so that all the members in the group can
obtain the clear sport data or photos by decrypting the re-encrypted ciphertexts.

Email cloud server

rkA-B

BobAlice

ctA
ctB

(1)

(2)

(3)

(4)ReEnc

BobAlice

(pkj,skj)KeyGen()(pki,ski)KeyGen()

Cloud proxy server

pkj

rkij =ReKey(ski,pkj)

cti=Enc (pki, m)

ctj=ReEnc (rkij, cti) m=Dec2 (skj, ctj)

m=Dec1 (ski, cti)

Group 2

Group 1

User A

Data-sharing Cloud
ct

Fig. 9. Scenario of secure data-sharing in clouds

It is easy to see that, using our proposed VPRE as primitive in cloud-based
data-sharing environments, it has the following benefits:

1. Data sharing and storing security. The sensitive data are encrypted and
shared in a secure manner in which the cloud server can perform the sharing
program without obtaining any shared clear-data. Actually, the original data
are encrypted by the sharer, i.e., using the public key of user A in Fig. 9,
and the encrypted data are stored on the cloud.

2. Sensitive-data protection in the transformation in the presence of white-box
access. If A wants to share his data, he can creates a re-encryption key to the
cloud and allows the cloud to perform the data-sharing transformation (i.e.,
re-encryption program) on inputs the re-encryption key and the encrypted
data. We ensure that, even the cloud executes the re-encryption program in
white-box manner (i.e., debug the program, monitor the memory and register
and set the breakpoints etc.), the cloud server cannot gain any embedded
sensitive information such as cleartext data and secret key.

3. Sharer privacy preservation. Even the cloud colludes with terminal users, i.e.,
user in Group 1 and Group 2 in Fig. 9, it cannot obtain the sharer’s secret
key, which is guaranteed by the master secret-key security of our scheme.

4. Data-sharing for group users. We can facilitate a group of users and set a
group key, and use this group public-key to create the re-encryption key.
Any user in the group can decrypt the re-encrypted ciphertext and it will
improve the data-sharing efficiency.

5. Reasonable allocate the operation. In our deployment, the time-consuming
operations are computed by the cloud, and the operations of terminal user in
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Group 1 or Group 2 is very fast as it only needs several symmetric PRF oper-
ations. We can effectively deploy the data-sharing to light-weight nodes such
as Wireless Sensor Networks, Wireless Body Area Network and Internet-of-
Things etc.

6 Conclusion

In this paper, we presented a cloud-based data-sharing scheme that is based
on a cloud-based re-encryption scheme by using the cryptographic primitives of
indistinguishability obfuscation and puncturable pseudorandom functions. Our
scheme provides several helpful properties such as white-box security in the
secure data-sharing (re-encryption), CCA security of both first-level cipertext
and second-ciphertext, re-encryption verifiability of master secret-key security,
and reasonable allocation of the operations. Moreover, the proposed scheme is
efficient in decryption since it only needs several symmetric PRF operations,
which is fruitful to deploy the scheme in light-weight nodes such as WSNs,
WBANs and IoTs.
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