
Towards Malicious Security of Private Coin
Honest Verifier Zero Knowledge for NP via

Witness Encryption

Jingyue Yu1,2,3

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

2 State Key Laboratory of Cryptology, P. O. Box 5159, Beijing 100878, China
3 School of Cyber Security, University of Chinese Academy of Sciences, Beijing

100093, China
{yujingyue}@iie.ac.cn

Abstract. We develop a new method for transforming private coin
HVZK protocols into witness indistinguishable, and zero knowledge pro-
tocols, via witness encryption. This causes at most one additional round.
Previously, the general way of transforming a private coin HVZK proto-
col into zero knowledge is to employ a standard commitment technique,
which causes two more rounds. Following this method, we present two-
round witness indistinguishable proofs for specific languages, such as
OR-DDH, OR-QR, OR-LWE, based on the associated lossy encryption
and witness encryption. We apply this witness encryption idea to the
HVZK protocol in [Jawurek et.al. CCS13] and present a three-round zero
knowledge protocol with super-polynomial simulation (or zero knowledge
in FOT -hybrid model) for NP, assuming the existence of Yao’s garble
circuit and two-message oblivious transfer protocol (or ideal oblivious
transfer). In addition, our three-round zero knowledge protocol works
for generic languages, avoiding expensive Karp reductions.

Keywords: Zero Knowledge; Witness Indistinguishability; Honest Ver-
ifier Zero Knowledge; Witness Encryption

1 Introduction

The notion of zero knowledge was introduced by [18] to guarantee the privacy
of the prover. Zero knowledge (ZK) requires that the proof reveals nothing but
the validity of the statement even to a malicious verifier, and it has been widely
used in the designing of numerous cryptographic protocols.

For many practical applications of zero knowledge, such as coin-tossing and
non-malleable protocols, they actually don’t have to satisfy the simulation-based
security but only require a weaker indistinguishable security. However, the round
complexity of those protocols is determined by the round complexity of zero
knowledge.

Witness indistinguishability (WI) and witness hiding (WH) [12] are two dif-
ferent relaxed notions of zero knowledge. Roughly, we say a protocol is witness
indistinguishable if the statement has two independent witnesses, then the ma-
licious verifier cannot distinguish which witness the prover is using. Witness
hiding proofs guarantee that a malicious verifier cannot obtain any witness of
the statement being proved from interacting with an honest prover.

Goldreich and Krawcyzk [16] showed that three-round zero knowledge argu-
ments with black-box simulation do not exist for non-trivial languages. Bitansky
and Paneth [6] used Yao’s garbled circuit and two-message OT protocol [25] to
construct a three-round witness hiding protocol and a three-round weak zero
knowledge protocol, while their constructions also rely on point obfuscation.

Recently, Jain et. al. [21] constructed a three-round distributional weak zero
knowledge for NP, based on Σ-protocol, assuming the existence of two-message
OT protocols with security against malicious receiver and semi-honest receiv-
er [25, 19]. They used a distinguisher-dependent (black-box) simulation to bypass
lower bounds on black-box simulation [16]. This is a big break. Unfortunately,
their constructions of three-round weak zero knowledge are not closed under
sequential repetition.

Jawurek et. al. [22] constructed a five-round efficient zero knowledge protocol
using garbled circuits. To reduce the round-complexity of zero knowledge pro-
tocols using garbled circuits, Ganesh et. al. [13] used a conditional verification
to obtain a three-round zero knowledge protocol in the random oracle model
(ROM).

Dwork and Naor [11] introduced zaps, which are two-round public coin wit-
ness indistinguishable protocols, and they gave a construction based on non-
interactive zero knowledge proofs. Later, Bitansky and Paneth [7] realized zaps
and non-interactive witness indistinguishability from indistinguishable obfusca-
tion, which also use non-interactive zero knowledge as a tool. Recently, several
works [3, 21] follow the approach of [1, 23] to reduce rounds in interactive pro-
tocols, expect that they used oblivious transfer (OT) protocols, instead of PIR
schemes. In particular, they compressed a Σ-protocol into a two-round witness
indistinguishable argument, using sub-exponential OT protocols.

Honest verifier zero knowledge (HVZK) is another relaxed notation of zero
knowledge, in which the verifier follows the protocol honestly but tries to learn
something about the prover’s privacy from interaction with an honest prover.
HVZK is a clear weaker notion of zero knowledge. For public coin HVZK proto-
cols, such as the classic Blum protocol [8], Σ-protocol [9], they are three-round
witness indistinguishable/witness hiding protocols w.r.t. hard distribution with
two (or more) witnesses [12], and witness hiding w.r.t. hard distribution with
unique witness which are indistinguishable from hard distributions with two (or
more) witnesses [10]. Additionally, they can be transformed into zero knowledge
by letting the verifier commit to his challenge bits (in the HVZK protocol) ahead
of time. The resulting protocol is a four-round zero knowledge protocol.

Compared to public coin HVZK protocols, private coin HVZK protocols
(with constant soundness error) can be achieved within two rounds, such as

2

HVZK protocols for graph non-isomorphism (GNI), HVZK protocols from lossy
encryption [5]. Note that the private coin HVZK protocols for NP might be not
secure against a malicious verifier. The general way of transforming a private
coin HVZK protocol into zero knowledge is to employ a standard commitment
technique1: Rather than directly sending the prover message to the verifier, the
prover makes a commitment to the prover message. Then the verifier reveals his
randomness, demonstrating to the prover that he follows the protocol correctly,
and only then the prover opens his commitment to the verifier. This causes two
additional rounds.

1.1 Our Results

In this work, we start with a two-round private coin HVZK protocol for NP with
constant soundness error from witness encryption. We show this HVZK protocol
is not witness indistinguishable but witness hiding. Observe that witness hiding
might not be closure under sequential/parallel repetitions of this protocol. For
HVZK protocols with negligible soundness error from witness encryption, the
prover’s privacy against a malicious verifier is not clear.

Rather than using a commitment technique, we construct 3-round witness
indistinguishable protocols for NP using a “witness encryption” technique. Fur-
thermore, using this kind of “witness encryption” idea, we present the following
two constructions:

– Two-round witness indistinguishable proof for OR-Composition of specific
languages possessed of lossy encryption, such as OR-DDH, OR-QR, OR-
LWE, from witness encryption.

– Three-round zero knowledge with super-polynomial simulation (or zero knowl-
edge in FOT model) for generic languages, based on the existence of Yao’s
garbled circuit and two-message oblivious transfer protocol (or ideal oblivi-
ous transfer).

Next, we give an overview of our main results.

HVZK from witness encryption. Recall that a witness encryption scheme
[15] is defined for an NP language L with corresponding witness relation RL.
It consists of two algorithms (Enc,Dec): The encryption algorithm Enc takes
a statement x ∈ L and a message m as inputs and outputs a ciphertext ct.
A user who owns w ∈ RL(x) can decrypt ct using the decryption algorithm
Dec. Additionally, the two efficient algorithms need to satisfy the following two
properties: Correctness requires that if (x,w) ∈ RL, then Decw(Encx(m; r)) = m;
Security requires that for any x /∈ L, Encx(m; r) is semantic secure.

Now consider a two-round honest verifier zero knowledge protocol for an NP
language L. The prover convinces the verifier of that x ∈ L by using witness

1 For a private coin HVZK protocols for coNP, such as two-round HVZK protocols
for graph non-isomorphism (GNI), the general way of transforming them into zero
knowledge is through cut and choose protocols.

3

encryption. In the first round, the verifier encrypts a random bit under the
statement x, and sends the corresponding ciphertext ct to the prover. In the
second round, the prover uses its witness w ∈ RL(x) to decrypt the ciphertext
and sends the decryption bit to the verifier. The verifier accepts iff the received
bit is equal to the bit chosen by itself.

It’s not hard to see that the above two-round protocol is an honest verifier
zero knowledge/witness hiding argument with constant soundness error. We ob-
serve that this protocol is not witness indistinguishability, since for a malformed
ciphertext, the decryption results using different witnesses may be not the same.

To illustrate this consider a witness encryption scheme for an OR-composition
of PRG language Lor = L ∨ L. For an instance x := x0||x1 ∈ Lor with two
independent witnesses w0, w1 ∈ RLor

(x), where w0 ∈ RL(x0) and w1 ∈ RL(x1),
a malicious verifier can efficiently find some x′ ∈ L such that w0 ∈ RLor

(x′) and

w1 /∈ RLor
(x′), by setting x′ = x0||x′1, where x0 ∈ L but x′1

R←− {0, 1}n. Then
ciphertexts ct = Encx′(m; r) under x′ uses w0 and w1 as secret key to decrpt
and the decryption results might be not the same. This WI attack follows the
input-distribution-switching technique [10].

Fixing it using a witness encryption scheme. Note that in the above pro-
tocol, the cheating prover can fool the verifier with constant probability. For
the rest discussion, we consider the protocol that the verifier sends a ciphertext
ct = Encx(m; r) for a random string m ∈ {0, 1}n, to achieve a negligible sound-
ness error. In turn the prover responds with m′ = Decw(ct). The above witness
indistinguishable attack still works.

Previously, this problem can be resolved by empolying a standard commit-
ment technique (Com,Open): After receiving a ciphertext ct, the prover sends a
comitment com = Com(m′), rather than sending m′ = Decw(ct); and it expects
to receive back m, r such that ct = Encx(m; r). Then the prover sends the open-
ing of com to the verifier. The resulting protocol is a four-round zero knowledge
argument.

In this work, we use a witness encryption scheme to ensure that a malicious
verifier obtains the corresponding decryption only when the ciphertext ct is
honestly generated. We first consider the following candidate two-round protocol:
After receiving ct from the verifier, the prover sends c̃t = Enc(x,ct)(m

′) to the
verifier, where m′ = 0n if Decw(ct) = ⊥, otherwise m′ = Decw(ct); and (x, ct) ∈
L̃. Let L̃ = {(x, ct) : ∃m, r s.t. ct = Encx(m; r)} be an NP language consisting
of all instance and legal witness encryption ciphertext pairs.

For witness indistinguishability, we consider the following two cases. In case
(x, ct) ∈ L̃, we have for all ciphertext ct under x, Decw0

(ct) = Decw1
(ct), by the

correctness of witness encryption. In case (x, ct) /∈ L̃, by the security of witness

encryption, we have that {Enc(x,ct)(m; r̃)}
c
≈ {Enc(x,ct)(0n; r̃)}. Thus, no matter

which is the case here, the distributions {〈P (w0), V ∗〉 (x)} and {〈P (w1), V ∗〉 (x)}
are indistinguishable.

At first, it seems the resulting two-round protocol is sound, since for x /∈ L,
a cheating prover cannot recover m from ct. Thus the soundness would follow
by the security of witness encryption. However, this is flawed. After receiving

4

the challenged ciphertext ct, the reduction algorithm R passes ct to P ∗ and
receives back c̃t. It expects to decrypt c̃t and then breaks the security of ct =
Encx/∈L(m; r), while a PPT reduction algorithm cannot decrypt c̃t without m, r.

Three-round WI arguments for NP from witness encryption. To acheive
soundness, we rely on the Feige-Shamir trapdoor paradigm, the prover adds
some “trapdoor” to ensure that the reduction algorithm can decrypt c̃t using

this trapdoor. Inspired by [6], we let the prover first send f(k) where k
R←− {0, 1}n

and f is an injective one way function. Then the verifier computes a ciphertext

ct = Encx(m) for a random string m
R←− {0, 1}n under the statement x. The

prover decrypts ct using witness and obtains m′, then it sends ct′ = enck(m′) and
c̃t = Enc(x,ct)(k) to the verifier, where enc is a private key encryption algorithm.

The verifier uses (m, r) as witness to decrypt c̃t and obtains k, then decrypts ct′

and checks whether the decryption result is equal to m or not. For more details
see Section 3.2.

Two-round WI proofs for specific languages from lossy encryption and
witness encryption. If we require the witness encryption scheme for L is sta-
tistically secure (i.e. for any x /∈ L, Encx(m; r) is statistically hiding m), then
the candidate two-round WI protocol is sound. If there exists an (unbounded)
cheating prover can fool the verifier with non-negligible probability, then there
exists an (unbounded) reduction algorithm breaking the statistically secure of
witness encryption. In particular, lossy encryption [4, 20] can be seen as a statis-
tical witness encryption for specific languages known as in SZK [15, 5], such as
DDH, Quadratic Residuosity (QR), LWE. Since WI is only meaningful for lan-
guages with two (or more) witnesses, we present a general two-round WI proof
for OR-composition of languages possessed of lossy encryption in Section 4.

Three-round zero knowledge protocols for NP from two-message se-
cure function evaluation. Jawurek et. al. [22] proposed an efficient zero knowl-
edge protocols for generic languages based on Yao’s garbled circuits and two-
message OT protocols [24, 26]. In a nutshell, P and V first execute a 2PC [17]
to jointly compute a function fLx (w, y), which on input (w, y) outputs ŷ = y if
w ∈ RL(x), otherwise ŷ = ⊥: The prover sends OT1(w) to V , and V plays the
role of garbled circuit constructor to construct garbled circuit Ĉ for realizing
fLx,y(w) = fLx (w, y) and computes OT2(labi,0, labi,1). The prover can evaluate
the circuit and retrieve ŷ. For privacy of the prover, the prover don’t directly
reveal ŷ to V . They used a commitment technique to achieve zero knowledge: P
sends a commitment of ŷ to V , and until V sending a valid opening (all input
labels) of the garbled circuit, he reveals ŷ to V .

We use the witness encryption idea to ensure the prover’s privacy. At a
high level, P and V jointly run another 2PC to ensure that V learns ŷ only
if it honestly constructs the garbled circuit Ĉ for fLx . In this sub-protocol, P
plays the role of garbled circuit constructor to construct a garbled circuit D̂

for functionality f L̂
Ĉ

which on input a legal opening of Ĉ outputs ŷ, otherwise

⊥, where L̂ is defined for all legal garbled circuits for fLx . This protocol is also

5

flawed and it can be fix to be sound using the Feige-Shamir trapdoor paradigm as
before. In Section 5, we present a three-round zero knowledge from two-message
secure function evaluation, which in turn relies on the existence of Yao’s garbled
circuit and two-message OT protocol.

Ganesh et.al. [13] used a conditional verification technique to obtain a three-
round zero knowledge protocol in the random oracle model (ROM). Although
the efficiency of our construction is slightly less than theirs, our protocol is under
standard assumptions instead of random oracle. In the table below, we compared
our protocol with the existing zero knowledge protocols using garbled circuits.
Note that our three-round protocol can be adaptively secure, when plugged in
with RE-OTs.

Protocols Rounds Assumptions Proof Size

[JKO13] 5 OT+GC O(n · |C|)
[GKPS18] 3 OT+ROM O(n · |C|)

This paper 3 OT+GC O(n · |C|) + O(n · |D|)

Table 1: Comparison with other ZKGC protocols

Furthermore, our constructions of zero knowledge can also avoid expensive
Karp reductions to NP-Complete languages for proving generic statements,
such as “I know w s.t. x = SHA-256(w)”. Note that if the underlying two-
message OT protocol is instantiated by weak OT [3], then the resulting three-
round protocol is zero knowledge with super-polynomial simulation. If the under-
lying two-message OT protocol is instantiated by an ideal OT protocol like [22],
then the resulting protocol is zero knowledge in FOT-hybrid model.

1.2 Related Work

Bitansky and Paneth [7] used the terminology of witness encryption to construct
a non-interactive witness indistinguishable protocol, however in their construc-
tion, the witness encryption scheme can be only implemented by indistinguish-
able obfuscation. For our purpose, all potential constructions of witness encryp-
tion schemes [15, 14] are fit in our protocols.

Our constructions of two-round WI proofs for specific languages are based
on lossy encryption and witness encryption without using non-interactive zero
knowledge. Zaps, two-round public coin WI protocols for NP are constructed
using NIZK as a tool [11, 7]. Recent works [3, 21] transform Σ-protocol into
two-round WI argument by using OT protocol against quasi-polynomial time
receivers.

6

2 Preliminaries

2.1 Basic Notations

Throughout the paper, n denotes the security parameter. A function negl(n) is
said to be negligible if for any polynomial poly(n) there exists an N such that for
all n ≥ N , negl(n) ≤ 1

poly(n) . We will abbreviate probabilistic polynomial-time

with PPT.
For a positive integer κ, [κ] denotes {1, 2, . . . , κ}. For a set S, we write x

R←− S
to denote that x is chosen uniformly at random from S. For a distribution D
over a finite set S ⊆ {0, 1}∗, we denote by x ← D the process that the sample
x ∈ S is drawn according to the distribution D.

2.2 Interactive Protocols

An interactive proof system 〈P, V 〉 for an NP language L with its associated
relation RL consists of a pair of interactive Turing machines P and V . The
prover P wants to convince the verifier V of some statement x ∈ L. We denote
by 〈P (w), V (z)〉(x) the transcript of an execution of 〈P, V 〉 on common input x,
P ’s private input w and V ’s auxiliary input z.

Definition 1 (Proof System). An interactive argument 〈P, V 〉 is an argument
system with soundness error s for an NP language L, if it satisfies:

• Completeness. For any (x,w) ∈ RL,

Pr[〈P (w), V 〉(x) = 1] ≥ 1− negl(n)

• Soundness. For any (unbounded) malicious P ∗, any x /∈ L,

Pr[〈P ∗, V 〉(x) = 1] ≤ s(n)

where s is called soundness error.

An interactive argument is defined similarly to an interactive proof except that
soundness is only required to be hold for PPT cheating provers.

Definition 2 (Witness indistinguishability). Let L be an NP language de-
fined by RL. An interactive protocol 〈P, V 〉 is said to be witness indistinguishable
for relation RL if for every PPT V ∗, every auxiliary input z ∈ {0, 1}∗ and every
sequence {(x,w,w′)}x∈L, where (x,w), (x,w′) ∈ RL, the following two distribu-
tion ensembles are computationally indistinguishable:

{〈P (w), V ∗(z)〉(x)}x∈L,z∈{0,1}∗
c
≈ 〈P (w′), V ∗(z)〉(x)}x∈L,z∈{0,1}∗

Definition 3 (Hard Distribution). Let L be an NP language defined by RL.
Let D = {Dn = (Xn,Wn)}n∈N be an efficiently samplable distribution ensemble
on RL. We say D is hard for RL if for any PPT machine M

Pr[M(Xn) ∈ RL(Xn)] ≤ negl(n)

7

Definition 4 (Witness Hiding). Let L be an NP language defined by RL. We
say 〈P, V 〉 is witness hiding for a hard distribution D, if for any PPT machine
V ∗

Pr[〈P (Wn), V ∗〉 (Xn) ∈ RL(Xn)] ≤ negl(n)

Definition 5 (Honest Verifier Zero Knowledge). An interactive protocol
〈P, V 〉 is said to be honest verifier zero knowledge for an NP language L, if there
exists a PPT simulator Sim for any honest verifier V , when given any x ∈ L
simulates the transcript 〈P (w), V (z)〉(x). That is, for any (x,w) ∈ RL,

〈P (w), V (z)〉(x)
c
≈ Sim(x)

Definition 6 (Zero Knowledge). An interactive protocol 〈P, V 〉 is said to be
zero knowledge for an NP language L, if for any x ∈ L, there exists a PPT
simulator Sim, for any PPT malicious verifier V ∗,

〈P (w), V ∗〉(x)
c
≈ SimV ∗(x)

2.3 Witness Encryption

Recall the definition of witness encryption from [15].

Definition 7 (Witness Encryption). A witness encryption scheme for an
NP language L (with corresponding witness relation RL) consists of the following
two algorithms:

– ct← Encx(m; r): The encryption algorithm Enc takes as input a string x ∈ X
and a message {0, 1}n, and outputs a ciphertext ct. For notational simplicity,
we sometimes write Encx(m) for Encx(m; r).

– m/⊥ ← Decw(ct): On inputs w and the ciphertext ct, the decryption algo-
rithm Dec outputs m or ⊥.

The two algorithms (Enc,Dec) satisfy the following properties:

• Correctness. For any message m ∈ {0, 1}n, for any x ∈ L, and w ∈ RL(x),
we have

Pr[Decw(Encx(m; r)) = m] = 1

• Security. For any x /∈ L, for any PPT adversary A, we have

|Pr[A(Encx(m; r))]− Pr[A(Encx(m′; r′))] = 1| = negl(n)

where (m,m′)← A(x).

There have been several constructions of witness encryption (WE) for NP
languages over the past few years. Garg et.al. [15] gave us the first candidate
construction of witness encryption, based on the NP-complete EXACT COV-
ER problem and approximate multilinear maps (MLMs). Garg et.al. [14] showed
that indistinguishability obfuscation implies witness encryption.

8

2.4 Lossy Encryption

Lossy encryption can be seen as statistical witness encryption schemes for specific
languages known to be in SZK [15, 5]. Review the definition of lossy encryption
from [4, 20].

Definition 8 (Lossy Encryption). A lossy encryption scheme is a tuple effi-
cient algorithm (LE.Gen, LE.Enc, LE.Dec) such that

– LE.Gen(1n, inj) outputs injective keys (pk, sk).
– LE.Gen(1n, loss) outputs lossy keys (pk, sk).

Additionally, the algorithms satisfy the followings:

1. Correctness on injective keys. For all m ∈ {0, 1}n,

Pr[(pk, sk)← LE.Gen(1n, inj); r
R←− {0, 1}poly(n) : LE.Dec(sk, LE.Enc(pk,m; r)) = m] = 1

2. Indistinguishability of keys. In lossy mode, public keys are computa-
tionally indistinguishable from those in the injective mode. Specifically, if
proj : (pk, sk)→ pk is the projection map, then

{proj(LE.Gen(1n, inj))} ≈c {proj(LE.Gen(1n, loss))}

3. Lossiness of lossy keys. For (pk, sk)← LE.Gen(1n, loss), for all m0,m1 ∈
{0, 1}n,

{LE.Enc(pk,m0;R)}
s
≈ {LE.Enc(pk,m1;R)}

4. Openability. If (pk, sk) ← LE.Gen(1n, loss) and r
R←− {0, 1}poly(n), then for

all m0,m1 ∈ {0, 1}n, there exists r′ ∈ {0, 1}poly(n) such that LE.Enc(pk,m0; r) =
LE.Enc(pk,m1; r′) with overwhelming probability. That is, there is an (un-
bounded) algorithm LE.open that can open a lossy ciphertext to any plaintext
with overwhelming probability.

2.5 Two-message Secure Function Evaluation

We consider a two-message secure function evaluation protocol (SFE) (P1(x1), P2(x2)):
P1 with private input x1 and P2 with private input x2 jointly compute function
f(x1, x2) and only P1 receives the output. We require malicious (indistinguish-
able) security against P ∗1 and P ∗2 .

• Indistinguishable Security for Function Evaluator P1. For any x01, x
1
1 ∈

{0, 1}poly(n), the distributions of the first messages (sent to P2) generated us-
ing x01 and x11 respectively are computationally indistinguishable.
• Indistinguishable Security for Function Constructor P2. For any PPT

malicious P ∗1 , there exists an extractor Ext (not necessarily efficient) such
that:

Pr[Exp0 → 1]− Pr[Exp1 → 1] ≤ negl(n)

where Expb is defined as follows, for b ∈ {0, 1}.

9

1. P ∗1 outputs the first message msg1.
2. The extractor Ext takes msg1 as input and outputs x∗1.
3. Let x02 and x12 be two inputs such that f(x∗1, x

0
2) = f(x∗1, x

1
2). On inputs

xb2 and msg1, P2 obtains msg2 and sends it to P ∗1 .
4. Based on msg2, P ∗1 outputs a bit b′.

Garbled Circuits. Recall the definition of garbling scheme for circuits [27, 22].
A garbling scheme for circuits consists of three PPT algorithms (Garble,Eval,Ver).

– (Ĉ,K = {labω,b}ω∈inp(C),b∈{0,1})← Garble(1n, C).
The circuit garbling algorithm Garble takes as input a security parameter 1n,
a circuit C, and outputs a garbled circuit C̃ with labelsK = {labω,b}ω∈inp(C),b∈{0,1}
for the input wires of C.

– y ← Eval(Ĉ, {labω,xω
}ω∈inp(C)).

Given a garbled circuit Ĉ and a sequence of input labels {labω,xω}ω∈inp(C),
the evaluation algorithm outputs a string y.

– 0/1← Ver(f, Ĉ, {labω,b}ω∈inp(C),b∈{0,1}).

Given a garbled circuit Ĉ and both input labels of input wires {labω,b}ω∈inp(C),b∈{0,1},
there exists a deterministic algorithm Ver that can recover the underlying
circuit C ′ of garbled circuit Ĉ and compares it with the original functionality
f . If Ĉ realize the functionality of f , the verification algorithm Ver outputs
1; otherwise, it outputs 0.

The three algorithms (Garble,Eval,Ver) satisfy correctness, soundness and
verifiability. The details refer to the corresponding definitions in [22]. We give
the definitions in the full version.

Oblivious Transfer. Oblivious transfer is a protocol between two parties—
a sender S with a pair of inputs (m0,m1) and a receiver R with a choice
bit b ∈ {0, 1}. At the end of this protocol, the receiver R obtains mb and
nothing about m1−b, while the sender S learns nothing about b. Formally, let
π = 〈S,R〉 denote the protocol that computes the oblivious transfer functional-
ity, fOT((m0,m1), b) = (⊥,mb).

We recall the notion of two-message oblivious transfer [19, 2] below. A two-
message OT protocol π = 〈S,R〉 is defined by the following three algorithms
(OT1,OT2,OT3), and the three algorithms satisfy correctness, game-based re-
ceiver security and sender security [19, 2].

– (ot1, st)← OT1(1n, b): The receiver R runs the algorithm OT1 on inputs 1n

and the receiver’s choice bit b ∈ {0, 1} and obtains ot1 and the corresponding
state st. We write OT1(b) for simplifying notation.

– ot2 ← OT2(ot1,m0,m1): After receiving ot1 from R, the sender S runs
OT2(ot1,m0,m1) to obtain ot2, where m0,m1 are the inputs of the sender.

– mb ← OT3(ot2, st): The receiver R can obtain mb by evaluating OT3(ot2, st).

Instantiating the two-message secure funtion evaluation. We can imple-
ment 2-message secure function evaluation (P1(x1), P2(x2)) that achieves secu-
rity against malicious PPT P ∗1 and malicious PPT P ∗2 [2], using Yao’s garbled

10

circuit and 2-message OT [24, 25, 26, 19]. Informally, in the first round, P1 plays
the role of OT receiver with choice bits x1 and sends the corresponding ot1 to
P2. In the second round, P2 constructs a garbled circuit F̂ for the circuit F
(that realizes f(x1, x2)) and transfers the corresponding input labels to P1 by
acting as the OT sender. At the end of this protocol, P1 obtains F̂ and ` = |x1|
labels corresponding to the input wires to F ; then P1 computes the circuit as the
function evaluator, obtaining ŷ. Formally, two-message secure funtion evaluation
(P1(x1), P2(x2)) is defined as follows.

– Inputs: P1 has x1 and P2 has x2.
– The Protocol (P1(x1), P2(x2)):

1. P1 runs the OT-receiver program OT1(x1,i)→ (ot1,i, sti), for i ∈ [`], and
sends {ot1,i}i∈[`] to P2.

2. P2 constructs a circuit F with x2 hardwired in it, and computes f(x1, x2)
on input x1. P2 generates the garbled circuit for F with x2 hardwired in
it: (F̂ , {lab0i , lab1i }i∈[`]) ← Garble(F), where ` = |x1|; Then P2 executes
OT protocol using the input labels (lab0i , lab

1
i) as sender messages: for

i ∈ [`], ot2,i ← OT2(ot1,i, lab
0
i , lab

1
i); P2 sends F̂ and ot2 = {ot2,i}i∈[`] to

P1.
3. Following the above, P1 can recover {labx1,i

i }i∈[`] by running OT3(sti, ot2,i),

for i ∈ [`]. P1 then computes the circuit Eval(F̂ , {labx1,i

i }i∈[`]) to obtain
f(x1, x2).

The details of the security proof against malicious PPT P ∗1 and P ∗2 refer to
[2].

3 A Conditional Verification Technique via Witness
Encryption

3.1 Warm-up: Honest Verifier Zero Knowledge from Witness
Encryption

In this subsection, we start by presenting an honest verifier zero knowledge from
witness encryption, with constant soundness error. Inspired by honest verifier
zero knowledge using lossy encryption [5], we consider the following protocol
(see Fig. 1 for details) for an NP language L: given a statement x, the verifier V
sends to the prover P an encryption of a random bit b under x as public key. P
uses the corresponding witness w of x to decrypt the ciphertext and sends the
decryption result to V .

Theorem 1. Let (Enc,Dec) be a witness encryption scheme for all NP lan-
guages. The protocol in Fig.1 is an honest verifier zero knowledge with 1

2 sound-
ness error.

Proof (sketch). The completeness/soundness of this protocol follow the correct-
ness/security of witness encryption respectively. We prove that the above proto-
col is honest verifier zero knowledge by presenting a PPT simulator which can
successfully guess the encrypted bit b with probability 1

2 . ut

11

x ∈ L

Prover P (w) Verifier V

b
R←− {0, 1}

ct = Encx(b; r)
ct

b′ ← Decw(ct) b′

Accept iff b′=b

Fig. 1: Two-round HVZK for NP from witness encryption

Remark 1. Note that this protocol in Fig. 1 is only honest-verifier zero knowl-
edge, since a cheating verifier can obtain extra knowledge by sending a random
chosen ciphertext. This can be fixed to a 4-round zero knowledge argument by
a standard commitment technique (Com,Open): Instead of sending b′ directly,
the prover sends com = Com(b′; rp) to the verifier, and expects to receive back
b, r such that ct = Encx(b; r). Then the prover opens the commitment com by
sending b′, rp.

Claim. This protocol in Fig. 1 is not witness indistinguishable.

Proof. Here we show the protocol in Fig. 1 is not witness indistinguishable by p-
resenting an attack. It’s possible that there exists a PPT V ∗ that can distinguish
{〈P (w0), V ∗(z)〉(x)} from {〈P (w1), V ∗(z)〉(x)}, for some sequence {(x,w0, w1)},
where (x,w0) ∈ RL and (x,w1) ∈ RL. Specifically, we define {X1

n,W
1
n} to

be a distribution ensemble over RL′ with unique witnesses and {X2
n,W

2
n} to

be a distribution ensemble over RL with multiple witnesses. We require that

{X1
n,W

1
n}

c
≈ {X2

n,W
2
n}. More details refer to [10].

Consider L be some OR-NP Language L = T ∨ T ′, where T ⊂ XT and
T ′ ⊂ XT ′ are arbitrary NP languages. For x ∈ L, x := x0||x1, where x0 ∈ T
and x1 ∈ T ′. In this sense, we consider w0 ∈ RT (x0), and w1 ∈ RT ′(x1) as the
two corresponding witnesses of x ∈ L. The malicious V ∗ could efficiently find
some x′ ∈ L′ such that x′ ∈ X1

n with the corresponding witness w0 ∈ RL′(x′),
but w1 /∈ RL′(x′), by setting x′ := x0||x′1, where x0 ∈ T and x′1 is sampled from
XT ′/T

′ instead of T ′. Thus we have the desired ciphertext ct = Encx′(m; r) such
that Decw0

(ct) 6= Decw1
(ct). ut

Claim. This protocol in Fig 1 is witness hiding.

Proof. Assume towards contradiction, there exists a PPT adversary V ∗ and a
hard distribution D = {(Xn,Wn)}n∈N on RL, such that

Pr
(x,w)←(Xn.Wn)

[(P (w), V ∗)(x) ∈ RL(x)] ≥ ε =
1

poly(n)

We construct a PPT adversary RV
∗

that breaks the hard distribution of D.
Given x ← Xn as the statement, R receives ct from V ∗ and selects a random

12

bit b′
R←− {0, 1}, then provides b′ to V ∗. Note that V ∗ receives an accepting

decryption result, it will output a valid witness with probability ε. Thus, after

receiving b′
R←− {0, 1}, V ∗ outputs a witness of x with probability 1

2ε. This breaks
the hard distribution D = {(Xn,Wn)}n∈N. ut

Remark 2. The soundness of the protocol in Fig. 1 can be reduced to neg-
ligible by sequential/parallel execution ω(n) times. However, the protocol in
Fig. 1 may be not witness hiding under sequential/parallel execution. Consider
a witness encryption scheme [7] implemented using indistinguishable obfusca-
tion [14]: Encx(b) consists of an obfuscation Ẽ ← io(Ebx), where the circuit Ebx
with b ∈ {0, 1} and x hardwired in it, takes w ∈ RL(x) as input, and outputs
b, otherwise ⊥. The malicious verifier can generate a ciphertext Ẽ ← io(Efix)
where Efix is a circuit which on input w and outputs the i-th bit of w. Then the
malicious verifier can recover the entire witness w bit by bit from the decryption
results.

3.2 Three-round Witness Indistinguishable Arguments from
Witness Encryption

To prevent the above attacks, we require that the verifier can obtain the decryp-
tion results, only when the sending ciphertexts are honestly encrypted m under
the statement x. For those malformed ciphertexts, the verifier cannot obtain the
decryption.

In this subsection, we present a new construction of the witness indistin-
guishable protocol using witness encryption. In particular, we use an additional
witness encryption to ensure that V ∗ gets the corresponding decryption only
when the ciphertext is honestly generated by V ∗.

Protocol 3.2. Three-round WI arguments from witness encryption

– Ingredients: Let (Enc,Dec) be a witness encryption scheme. f : {0, 1}n →
{0, 1}n is an injective one way function. (enc, dec) is a private key encryption
scheme for any uniform key.

– Common input : x.
– Private input of the prover P : w ∈ RL(x).
– Interaction:

1. P chooses k
R←− {0, 1}n and then sends c = f(k) to the verifier.

2. V selects y
R←− {0, 1}n as the plaintext, and sends ct = Encx(y; r) to the

prover.
3. After receiving ct, P uses its private input w to decrypt ct and obtains
ỹ. If the decryption result is ⊥, then we set ỹ = 0n. Then it computes
ct′ = enck(ỹ) and sends ct′ to V . Furthermore, it uses x̃ = (x, ct) as a
statement of L̃ = {(x, ct) : ∃ (m, r) s.t. ct = Encx(m; r)} to encrypt k
and sends the corresponding ciphertext c̃t = Encx̃(k) to V

– Verification: The verifier V first decrypts c̃t using w̃ = (y, r) and obtains
k′. If f(k′) 6= c, then it aborts; else, it decrypts ct′ with k′ and obtains y′. It
accepts only if y′ = y.

13

Theorem 2. Protocol 3.2 is a three-round witness indistinguishable argument,
assuming the existence of witness encryption.

We show this protocol is a WI argument by showing the following two lemmas.

Lemma 1. Protocol 3.2 is sound, assuming the security of witness encryption.

Proof. Towards a contradiction, assume that there exists a PPT adversary P ∗

that can break the soundness of Protocol 3.2. We use the cheating prover P ∗ to
construct a PPT adversary RP

∗
breaking the security of witness encryption.

Without loss of generality, we assume P ∗ is deterministic. For infinitely many
x /∈ L, P ∗ can generate an accepting transcript for V with non-negligible prob-
ability ε. Let f(k) be the first message sent by P ∗.

After receiving f(k), the reduction R invokes an external witness encryption

challenger with plaintexts y0
R←− {0, 1}n, y1

R←− {0, 1}n and receives back a ci-

phertext ct = Encx(yb), where b
R←− {0, 1}. Then it passes ct to P ∗ and receives

back c̃t, ct′.
Given k as a non-uniform advice, R uses k as private key to ct′ and recovers

y. If y = yβ for β ∈ {0, 1}, then R outputs b′ = β. If y 6= yβ for β ∈ {0, 1}, then

R outputs a random bit b′
R←− {0, 1}.

Since P ∗ outputs an accepting proof with probability ε, the advantage of
that RP

∗
outputs b′ = b is at least 1

2ε, which is against the security of witness
encryption. ut

Lemma 2. Protocol 3.2 is witness indistinguishable, assuming the existence of
witness encryption.

Proof. Let V ∗ be an arbitrary PPT malicious verifier. Gameb denotes the ex-
periment 〈P (wb), V

∗〉 (x) where the prover completes the proof using wb, for
b ∈ {0, 1}: The prover uses wb to decrypt ct sent by V ∗ and obtains ỹb =
Decwb

(ct); Then P generates the third message c̃t = Encx̃(k), ct′ = enck(ỹb),
where x̃ = (x, ct). The only difference between the two experiments is the way
of generating ỹ.

To complete the proof, we show that for any ciphertext ct sent by V ∗, it will
fall into the following two cases:

– Case 1. (x, ct) ∈ L̃. In this case, ct is actually an encryption under x. By
the correctness of witness encryption of L, it holds that ỹ0 = Decw0(ct) =
Decw1(ct) = ỹ1. The distributions Game0 and Game1 are identical.

– Case 2. (x, ct) /∈ L̃. This in turn implies that the distributions {c̃t = Encx̃(k)}
and {c̃t = Encx̃(0n)} are computationally indistinguishable. By one-wayness
of injective one way function f and the CPA security of hybrid encryption, we
have that ỹb is computationally hiding. In this case, though ỹ0 and ỹ1 may be

not the same value, {f(k), ct,Encx̃(k), enck(ỹ0)}
c
≈ {f(k), ct,Encx̃(k), enck(ỹ1)}.

Thus, in either case, Game0
c
≈ Game1 as desired. ut

14

4 Two-round Witness Indistinguishable Proofs for
Specific Languages

In this section, we present a two-round witness indistinguishable proof for specific
languages, based on witness encryption technique. We transform a two-round
HVZK proof from lossy encryption into a two-round witness indistinguishable
proof, using witness encryption techniques.

Let L = {pk : (pk, sk) ← LE.Gen(1n, inj)} be the language consisting of all
injective public keys. Recall an HVZK proof system using lossy encryption [5]
for a specific language that works as follows:

1. V sends to the prover an encryption ct of a random string y
R←− {0, 1}n under

pk.
2. After receiving ct, P decrypts the ciphertext using its secret key and sends

back ỹ.
3. V accepts iff y = ỹ.

It’s not hard to see this protocol is an HVZK proof. The proof is similar to
the proof of the protocol in Fig. 1. In the following, we transform this HVZK
protocol into witness indistinguishable, without additional round. We consider
an NP language Lor = L ∨ L = {(pk0, pk1) : pk0 ∈ L or pk1 ∈ L}, since witness
indistinguishability is only meaningful for languages whose instance has two or
more independent witnesses.

Protocol 4.1: Two-round Witness Indistinguishable Proof

– Ingredients: Let (LE.Gen, LE.Enc, LE.Dec) be a lossy encryption scheme and
(Enc,Dec) be a witness encryption scheme.

– Common input: (pk0, pk1) ∈ Lor
– Private input of P : sk such that sk ∈ RL(pkb), for b ∈ {0, 1}.
– Interaction:

1. The verifier selects y
R←− {0, 1}n and computes ct0 = LE.Enc(pk0, y; r0), ct1 =

LE.Enc(pk0, y; r1). Then it sends ct = (ct0, ct1) to P .
2. After receiving ct, the prover does the following.

(a) Decrypt ctb using its witness sk and obtain ỹ, where ỹ = 0n if
LE.Decsk(ctb) = ⊥.

(b) Use (pk, ct) ∈ L̃ = {(pk, ct0, ct1) : ∃(y, r0, r1) s.t. ct0 = LE.Enc(pk0, y; r0), ct1 =
LE.Enc(pk0, y; r1)} as statement to encrypt ỹ and obtain c̃t = Enc(pk,ct)(ỹ).

(c) Output c̃t.
– Verification: The verifier uses (y, r0, r1) as witness to decrypt c̃t and obtains
y′. V accepts iff y′ = y.

Theorem 3. Assuming the existence of lossy encryption and witness encryp-
tion, Protocol 4.1 is a two-round witness indistinguishable proof.

Proof. Regarding completeness, it’s easy to see if both parties follow the proto-
col, then we have ỹ = y and y′ = ỹ, by the correctness of lossy encryption and
witness encryption respectively. Thus V accepts in the final step.

15

We now proceed to prove soundness. By contradiction, we assume that for
pk = (pk0, pk1) /∈ Lor, P ∗ can generate an accepting proof with non-negligible
probability. We can construct an (unbounded) adversary RP

∗
to break the lossi-

ness of lossy keys in Definition 8.

The reduction R invokes an external lossy encryption challenger C with pk0
and y0, y1

R←− {0, 1}n and receives back ct0 = LE.Enc(pk0, yβ ; r1), for β ∈ {0, 1}.
Then it computes ct1 = LE.Enc(pk1, y0; r1) and sends ct = (ct0, ct1) to P ∗. P ∗

returns a ciphertext c̃t. The reduction R now invokes the LE.Open algorithm on
inputs ct0, y0 and obtains r′0. Then it uses (y0, r

′
0, r1) as witness to decrypt c̃t

and gets y′. If y′ = yβ′ , for β′ ∈ {0, 1}, then it outputs β′; otherwise, it outputs

β′
R←− {0, 1}.
Since P ∗ outputs an accepting proof with non-negligible probability, we have

the advantage of RP
∗

breaking the lossiness of lossy keys (i.e. the advantage of
RP

∗
outputs β′ = β) is non-negligible.

Finally, we prove that the protocol is witness indistinguishable. Define Gameb
as the experiment in which the prover uses skb as witness during the proof. After
receiving ct = (ct0, ct1) from V ∗, the prover uses skb to decrypt ctb and obtains
ỹb, then it encrypts ỹb using (pk, ct) as statement: c̃tb = Enc(pk,ct)(ỹb). Using the

same proof idea as Lemma 2, we can have that Game0
c
≈ Game1. Due to page

limitation, we defer to the full version of our paper. ut

5 Three-round Zero Knowledge Arguments from
Two-message Secure Function Evaluation

Jawurek et.al. [22] proposed an efficient zero knowledge protocol for generic
languages based on Yao’s garbled circuits. Informally, in their protocol, P and
V first execute a SFE (P (w), V (y)) to compute function fLx which on input (w, y)
outputs ŷ = y if w ∈ RL otherwise ŷ = ⊥. At the end of the secure function
evaluation, P obtains ŷ. For zero knowledge against a malicious verifier, they
used a standard commitment technique: the prover sends a commitment of ŷ to
V , and reveals ŷ to V only if V sends back a valid opening of the garbled circuit.

Following the above idea, we reduce the round-complexity of zero-knowledge
protocols in [22]. Instead of using a standard commitment technique, we use
another SFE to ensure that V obtains ŷ only if it honestly generates the garbled
circuit for fLx (w, y). This leads to a three-round zero knowledge protocol.

5.1 Constructions

Let L be an NP language with corresponding relation RL. (OT1,OT2,OT3) is
a two-message OT protocol. (Garble,Eval,Ver) is a garbling scheme. Let L̂ :=

{(fLx , Ê) : ∃KE s.t. Ver(Ê,KE , fLx) = 1} be a language consisting of all legal
garbled circuits of fLx .

16

Protocol 5.1. Three-round Zero Knowledge Arguments

– Ingredients: enc is a private key encryption algorithm. f is an injective one
way function.

– Input: x ∈ L is common input and w ∈ RL(x) is the private input of P .
– Interaction:

1. The prover P does the following:
(a) Select k

R←− {0, 1}n and compute c = f(k);
(b) Act as the receiver of OT protocols using its private input w as choice

bits: (otE1,i, st
E)← OT1(wi), for i ∈ [|w|];

(c) Output c, otE1 = {otE1,i}i∈[|w|].
2. The verifier V does the following:

(a) Construct a circuit E for fLx with x ∈ L and y
R←− {0, 1}n hardwired

in it which on input w ∈ {0, 1}|w| outputs y if w ∈ RL(x) and ⊥
otherwise.

(b) Play the role of function constructor of SFE (P (w), V (y)) (x): Eval-

uate the garbled circuit for E, i.e. (Ê,KE) ← Garble(1n, E), where

KE = {labEi,0, labEi,1}i∈[|w|], and compute otE2,i ← OT2(otE1,i, lab
E
i,0, lab

E
i,1);

(c) Play the role of function evaluator of SFE
(
V (KE), P (k)

)
(Ê): For

j ∈ [l], (otD1,j , st
D)← OT1(KE

j), where l = |KE |;
(d) Output Ê, {otE2,i}, {otD1,j}.

3. The prover P does the following:
(a) Act as the function evaluator of SFE (P (w), V (y)) (x) to obtain ŷ:

Compute {labEi,wi
}i∈[|w|] ← OT3(stE , otE2), and obtain ŷ ← Eval({labEi,wi

}i∈[|w|], Ê);
(b) Compute ct = enck(ŷ);

(c) Let D be a circuit with Ê, k hardwired in it, and DÊ,k(KE) = k iff

Ver(Ê,KE , fLx) = 1, otherwise it outputs ⊥.

(d) Play the role of function constructor of SFE
(
V (KE), P (k)

)
(Ê):

Produce (D̂,KD)← Garble(1n, D), and {otD2,j ← OT2(otD1,j , lab
D
j,0, lab

D
j,1)};

(e) Output ct, D̂, {otD2,j}
– Verification: The verifier works as the follows:

1. Act as the function evaluator of SFE
(
V (KE), P (k)

)
(Ê) to obtain k′:

Run OT3(stD, otD2) to obtain the corresponding input labels {labD
j,KE

j

}j∈[l],

then compute Eval(D̂, {labD
j,KE

j

});
2. If f(k′) = c then use k′ to decrypt ct and obtain y′.
3. Accept iff y′=y.

Theorem 4. This protocol is a three-round witness indistinguishable argument,
assuming the existence of two-message OT protocol and Yao’s garbled circuits.

Note that if the underlying two-message OT protocol is instantiated by weak
OT [3], then the resulting protocol is zero knowledge with super-polynomial
simulation. If the underlying two-message OT protocol is instantiated by an
ideal OT protocol like [22], then the resulting protocol is zero knowledge in
FOT-hybrid model.

17

5.2 Security

We prove Theorem 4 by showing the above protocol has soundness and zero
knowledge.
Soundness. If there exists a PPT cheating prover P ∗ breaking the soundness of
Protocol 5.1 with non-negligible probability. We can construct a PPT adversary
RP

∗
that breaks the indistinguishable security for the function constructor of

SFE (P (w), V (y)) (x), using the cheating prover P ∗. The proof of soundness is
similar to the proof of Lemma 1. For lack of space, we omit the details and the
formal proof appears in the full version.
Zero Knowledge. We show this protocol is zero knowledge by constructing a
simulator Sim.

Proof. Let V ∗ be a PPT adversarial verifier. The simulator Sim does the fol-
lowing:

1. Select k
R←− {0, 1}n and compute c = f(k) and otE1 ← OT1(0n) .

2. Send c, otE1 to V ∗ and receive back Ê, otE2 , ot
D
1 .

3. Run Ext to extract K
E

from otD1 .

4. Run GC.Ext on inputs Ê,K
E

to extract the evaluation result y = Eval(Ê,K
E

).
– If y is a valid value such that Ver(Ê,KE , fLx) = 1, then it sets ŷ = y.
– If y is not a valid value (i.e. y might be a function, Ver(Ê,KE , fLx) = 0),

then it sets ŷ = 0n.

5. Use ŷ to compute ct = enck(ŷ), D̂, {otD2,j}, where D is a circuit with Ê, k

hardwired in it and DÊ,k(KE) = r iff Ver(Ê,KE , fLx) = 1, otherwise it
outputs ⊥.

6. Output ct, D̂, {otD2,j}.

Here we argue that the simulation is computationally indistinguishable from
a real proof, by constructing a hybrid simulator Sim′ that has witness w.
Sim′ works in the same way as Sim except the first simulation message c =

f(k), otE1 ← OT1(w). By the receiver security of OT protocol, we have the Sim′V
∗
(x,w)

c
≈

SimV ∗(x).

Next, we show that Sim′V
∗
(x,w)

c
≈ 〈P (w), V ∗〉 (x). Note that if V ∗ “cheats”

(i.e. Ver(Ê,KE , fLx) = 0), then the simulator Sim′ generates a ciphertext ct =
enck(0n) together with D̂Ê,k, {otD2,j}, while an honest verifier might encrypt a dif-

ferent value y. By a simple hybrid game, we have {ct = enck(0n), D̂Ê,k, {otD2,j}}
c
≈

{ct = enck(0n), D̂Ê,0n , {otD2,j}}
c
≈ {ct = enck(y), D̂Ê,k, {otD2,j}}. The former

follows the indistinguishable security for function constructor of SFE, since
DÊ,k(KE) = DÊ,0n(KE) = ⊥, for Ver(Ê,KE , fLx) = 0. The latter follows the

security of the private encryption scheme (enc, dec), since V ∗ cannot obtain k

conditioned on Ver(Ê,KE , fLx) = 0.
In the other case, V ∗ follows the protocol honestly, the view of V ∗ in the

real word and in the simulation is computationally indistinguishable. This is
guaranteed by the verifiability of garbled circuit: the extracted string y is equal
to Eval(Ê,KE) with overwhelming probability. ut

18

6 Conclusion

In this paper, we propose a new conditional verification technique using the idea
of witness encryption, and it can be used to transform private coin HVZK pro-
tocols into witness indistinguishable/zero knowledge protocols with at most one
more round. Following this method, we present the constructions of two-round
witness indistinguishable proofs for OR-composition of specific languages pos-
sessed of lossy encryption, from witness encryption. Furthermore, we also present
the efficient construction of three-round zero knowledge for generic languages
under standard assumptions (the existence of two-message SFE), in which the
expensive karp reductions are avoided.

Acknowledgements. We thank Yi Deng and Xuecheng Ma for helpful discus-
sions. We also thank the anonymous reviewers for comments and suggestions.

This work was supported in part by the National Natural Science Foundation
of China (Grant No.61772521), Key Research Program of Frontier Sciences, CAS
(Grant NO.QYZDB-SSW-SYS035), and the Open Project Program of the State
Key Laboratory of Cryptology.

References

[1] William Aiello, Sandeep N. Bhatt, Rafail Ostrovsky, and Sivaramakrishnan
Rajagopalan. Fast verification of any remote procedure call: Short witness-
indistinguishable one-round proofs for NP. In ICALP 2000, volume 1853 of LNCS,
pages 463–474. Springer, 2000.

[2] Prabhanjan Ananth and Abhishek Jain. On secure two-party computation in three
rounds. In TCC 2017, volume 10677 of LNCS, pages 612–644. Springer, 2017.

[3] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay
Wadia. Two-message witness indistinguishability and secure computation in the
plain model from new assumptions. In ASIACRYPT’17, volume 10626 of LNCS,
pages 275–303. Springer, 2017.

[4] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility
results for encryption and commitment secure under selective opening. In EURO-
CRYPT’09, pages 1–35. Springer, 2009.

[5] Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini Vasude-
van. From laconic zero-knowledge to public-key cryptography - extended abstract.
In CRYPTO 2018, volume 10993 of LNCS, pages 674–697. Springer, 2018.

[6] Nir Bitansky and Omer Paneth. Point obfuscation and 3-round zero-knowledge.
In TCC 2012, pages 190–208. Springer, 2012.

[7] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistin-
guishability from indistinguishability obfuscation. In TCC 2015, pages 401–427.
Springer, 2015.

[8] Manuel Blum. How to prove a theorem so no one else can claim it. In ICM’86,
1986.

[9] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In CRYPTO’94, LNCS 839,
pages 174–187. Springer, 1994.

19

[10] Yi Deng, Xuyang Song, Jingyue Yu, and Yu Chen. On the security of classic
protocols for unique witness relations. In PKC’18, LNCS 10770, pages 589–615.
Springer, 2018.

[11] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS’00, pages
283–293. IEEE Computer Society, 2000.

[12] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding proto-
cols. In STOC’90, pages 416–426. ACM press, 1990.

[13] Chaya Ganesh, Yashvanth Kondi, Arpita Patra, and Pratik Sarkar. Efficient adap-
tively secure zero-knowledge from garbled circuits. In PKC 2018, volume 10770
of LNCS, pages 499–529. Springer, 2018.

[14] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In FOCS 2013, pages 40–49. IEEE Computer Society, 2013.

[15] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In STOC’13, pages 467–476. ACM, 2013.

[16] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal on Computing, 25(1):169–192, 1996.

[17] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game.
In STOC’87, pages 218–229. ACM press, 1987.

[18] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[19] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message
oblivious transfer. Journal of Cryptology, 25(1):158–193, 2012.

[20] Brett Hemenway, Benôıt Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy
encryption: Constructions from general assumptions and efficient selective opening
chosen ciphertext security. In ASIACRYPT 2011, pages 70–88, 2011.

[21] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum.
Distinguisher-dependent simulation in two rounds and its applications. In CRYP-
TO’17, LNCS 10402, pages 158–189. Springer, 2017.

[22] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In CCS’13,
pages 955–966. ACM, 2013.

[23] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In
CRYPTO 2009, volume 5677 of LNCS, pages 143–159. Springer, 2009.

[24] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In
STOC 1999, pages 245–254. ACM, 1999.

[25] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings
of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 448–
457. Society for Industrial and Applied Mathematics, 2001.

[26] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In CRYPTO 2008, volume 5157 of LNCS, pages
554–571. Springer, 2008.

[27] Andrew Chi-Chih Yao. How to generate and exchange secrets. In FOCS’86, pages
162–167. IEEE, 1986.

20

	Towards Malicious Security of Private Coin Honest Verifier Zero Knowledge for NP via Witness Encryption

