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Abstract. Smart mobile devices have access to huge amounts of data
appropriate to deep learning models, which in turn can significantly im-
prove the end-user experience on mobile devices. But massive data col-
lection required for machine learning introduce obvious privacy issues.
To this end, the notion of federated learning (FL) was proposed, which
leaves the training data distributed on the mobile devices, and learns
a shared model by aggregating locally-computed updates. However, in
many applications one or more Byzantine devices may suffice to let cur-
rent coordination learning mechanisms fail with unpredictable or disas-
trous outcomes. In this paper, we provide a proof-of-concept for manag-
ing security issues in federated learning systems via blockchain technol-
ogy. Our approach uses decentralized programs executed via blockchain
technology to establish secure learning coordination mechanisms and to
identify and exclude Byzantine members. We studied the performance
of our blockchain-based approach in a collective deep-learning scenario
both in the presence and absence of Byzantine devices and compared our
results to those obtained with an existing collective decision approach.
The results show a clear advantage of the blockchain approach when
Byzantine devices are part of the members.

Keywords: Smart Mobile Device · Federated Learning · Byzantine De-
vices · Blockchain Technology.

1 Introduction

More and more smart mobile devices, such as mobile phones and tablet com-
puters, have become the main computing equipment for most people[1]. The
powerful sensors (such as cameras, accelerometers, and GPS) on these mobile
devices which are frequently carried produce and have access to an unprece-
dented amount of data, much of it private in nature. Models learned on such
data can greatly improve usability by powering more smart applications, but the
private nature of the data means there are risks and responsibilities to storing
it in a centralized location.
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To address the challenges of the private data inclusion in deep learning,
McMahan et al. [2] proposed federated learning, a learning technique that allows
users to collectively reap the benefits of shared models trained from this rich
data, without the need to centrally store it. Each participating device has a local
training dataset which is never uploaded to the server. And each participating
device computes an update to the current global model maintained by the server,
and only this update is communicated. A principal advantage of this approach
is the decoupling of model training from the need for direct access to the raw
training data. FL can significantly reduce privacy and security risks by limiting
the attack surface to only the device, rather than the device and the cloud.

But federated learning network is often claimed to be highly fault-tolerant,
in some cases one or more Byzantine devices – devices that show arbitrarily
faulty or malicious behavior – may suffice to let current coordination learning
mechanisms fail. In real-world, devices in federated learning network will face
situations in which some of the devices become Byzantine devices. Robustness
to Byzantine devices will therefore become of paramount importance. Until now
federated learning research has left unaddressed the problem of how to manage
the security issues generated by the presence of Byzantine devices: : (i) tampered
devices or failing sensors: the messages sent from these devices can contain
wrong or deceptive information; (ii) attacked or noisy communication channels:
messages can be manipulated or destroyed while propagating through the peer-
to-peer network; (iii) loss of availability : information stored on a devices hard
drive might be deleted; the device might be captured or destroyed.

In this paper, we argue that blockchain technology might be used to provide
solutions to the aforementioned security issues. In particular, we show that it
allows a federated learning network to achieve consensus in a collective learning
problem even in the presence of Byzantine devices. While blockchain technol-
ogy was originally developed as a peer-to-peer financial system in the context
of the cryptocurrency Bitcoin [3], recently there have been proposals for using
blockchain technology as a distributed computing platform where arbitrary pro-
grams (blockchain-based smart contracts) can be run. The best known example
of such a platform is Ethereum [4][5]. Blockchain-based smart contracts allow
decentralized systems with mutually distrusting nodes to agree on the outcome
of the programs. We provide the first proof-of-concept for using blockchain tech-
nology in federated learning applications. We do so by laying the foundation of
a secure general framework for addressing collective learning problems.

Our approach is based on the federated learning scenario of McMahan et
al.[2]. Via blockchain technology, we add a security layer on top of the classical
approach that allows for taking care of the presence of Byzantine devices. Our
blockchain approach also allows for logging events in a tamper-proof way: these
logs can then be used, if necessary, to analyze the behavior of the devices in
the network without incurring the risk that some malicious device has modified
them. In addition, it provides a new way to understand how we debug and
how we can approach data forensics in decentralized systems such as federated
learning network. We use the simulator to vary the number of Byzantine devices
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and compare the performance – in terms of consensus time and probability of a
correct outcome – of McMahan et al.’s [2] strategies and our blockchain-based
variants both in the presence and in the absence of Byzantine devices.

The remainder of this paper is structured as follows. Section 2 reviews re-
lated work. Section 3 presents our proposed blockchain-based privacy-preserving
deep learning framework. Section 4 evaluates the performance of the approaches
through experiments in simulation. Section 5 discusses advantages and disad-
vantages of our blockchain approaches. Section 6 presents our conclusions and
provides directions for future work.

2 Related Work

2.1 Privacy in deep learning

Deep learning aims to extract complex features from high-dimensional data and
use them to build a model that relates inputs to outputs (e.g., classes). Deep
learning architectures are usually constructed as multi-layer networks so that
more abstract features are computed as nonlinear functions of lower-level fea-
tures. Deep learning has been shown to outperform traditional techniques for
speech recognition [8], [9], image recognition [10], [11] and face detection [12].

The existing literature on privacy protection in machine learning mostly tar-
gets conventional machine learning algorithms, as opposed to deep learning, and
addresses three objectives: i) privacy of the data used for learning a model or
as input to an existing model, ii) privacy of the model, and iii) privacy of the
model’s output.

1) Techniques based on Secure Multi-party Computation (SMC) can help
protect intermediate steps of the computation, such as decision trees [13],
linear regression functions [14], association rules [15], Naive Bayes classi-
fiers [16], and k-means clustering [17],when multiple parties perform collab-
orative machine learning on their proprietary inputs. But SMC techniques
impose non-trivial performance overheads and their application to privacy-
preserving deep learning remains an open problem.

2) Techniques based on differential privacy have been proposed to guarantee
the confidentiality of personal data while training a differentially-private
model [18], [19], [20], [21], [22], [23], [24], [25]. Most of these techniques
for differentially-private machine learning are usually based on adding noise
during the training, which leads to a challenging trade-off between accuracy
and privacy.

3) Techniques based on privacy-preserving distributed learning have been
proposed to learn information from data owned by different entities without
disclosing either the data or the entities in the data. Shokri and Shmatikov
[26] and McMahan et al. [2] propose solutions where multiple parties jointly
learn a neural-network model for a given objective by sharing their learning
parameters, but without sharing their input datasets. A different approach
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is proposed by Hamm et al. [27] and Papernot et al. [28], where privacy-
preserving models are learned locally from disjoint datasets, and then com-
bined on a privacy-preserving fashion. However, the privacy guarantees of
some of these solutions have recently been called into question [29].

Unlike previously proposed techniques, our system achieves all three privacy
objectives in the context of collaborative neural-network training: it protects
privacy of the training data, enables participants to control the learning objective
and how much to reveal about their individual models, and lets them apply the
jointly learned model to their own inputs without revealing the inputs or the
outputs. This solution brings most of the data processing to where the data
resides and not the other way around, exactly as the edge computing paradigm
calls for [30]. Recent work have demonstrated the feasibility of running complex
deep learning inferences on local devices such as smarphones [31]. While in these
works models are previously trained in an offline manner, our experiments proved
that both the inference and the local retraining can be performed locally on a
low-power device in a timely manner.

2.2 Blockchain

Blockchain is a peer-to-peer distributed ledger technology that was initially used
in the financial industry [3]. The blockchain, a chronological ledger of transac-
tions that ensures the integrity of the information included, can be used to
capture and log both queries and its correspondent answers. Blockchain 2.0
introduces the concept of smart contracts [32], which is no longer limited to
transactions between currencies, and there will be more extensive instruction
embedded in the blockchain. The smart contract does not need mutual trust,
as it is not only defined by the code, but executed by the code. Besides, its
completely automatic and cannot be intervened.

1) Blockchain storage model, with non-tampering feature and traceability, en-
sures the privacy and credibility of the data.

2) The smart contract that automatically execute the default instruction and
the complete de-centric model guarantee the security of data sharing.

3) Establish a reliable big data distribution system without trusting third par-
ties.

The properties of blockchain make it a promising tool in many privacy informat-
ics applications [33]: from building decentralized backbones for data exchange
and interoperability, protocols enforced by immutable ledgers that keep track
of data usage [35], and data provenance [36], [37], to maintain user’s privacy
and security through the persistence of consent statements in blockchain [38].
Moreover, the blockchain technology offers practical means to safely and securely
store and track the use of personal data as well as the parameters of the deep
learning models. This increases the users’ trust in the system and provides a
rich source of information that can be used to better design future services. Our
proposed framework deploys blockchain technology where anyone can read and
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validate transaction entries, but only authorized entities are able to create or
write transaction to the blockchain.

3 Proposed Architecture

As shown in Fig. 1, our system design three major parts, namely, mobile devices
(i.e. participants), hub, and blockchain network. The data producers collect the
massive data through the smart contract to store in the blockchain, for the use of
data sharing. The smart contract code runs on the contract layer of blockchain,
which provides the authority to control the system.
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Fig. 1. High-level architecture of our deep learning system for activity recognition.

3.1 Participants

1© Inference. We assume that each participant (Ri) relies on the deep learning
models (DLMs), Mi, when conducting a inference. Specifically, Ri checkouts Mi

from its local hub and uses it to conduct the inference. During this, Ri stores
the information captured by its sensors, producing the inference data (IDi). IDi

allow Ri to update/improve the existing Mi. Specifically, a supervised machine
learning approach is adopted: IDi are used as input to Mi, while the class scores
Oi (e.g. human activities) as the target output. Then, the fine-tunning of the
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DLM parameters Wi to the newly acquired data IDi is accomplished using the
standard back-propagation technique and by selecting an optimizer. With these
new parameters, the participant is expected to increase its competences and
adaptability to target inference.

Algorithm 1 Inference (based on CNN forward and backward propagation.)

Require: M-dimensional data, IDi = [I1, · · · , In]T

Ensure: The class scores, Oi = [O1, · · · , Oc]
1: Download θ × |w(i)| parameters from local hub.
2: for l := 1→ #HiddenLayers do
3: for i := 1→ #RowunitinLayerl do
4: for j := 1→ #ColumnunitinLayerl do
5: Find the layer activations by,
6: Ol

ij = ϕ(alijw
l
ij) + blij

7: Compute next layer inputs
8: end for
9: end for

10: end for
11: Keep the final output as Ol

12: Calculate error at the output layer.
13: for l := 1→ #HiddenLayers do
14: Find error partial derivation.
15: Find error at the previous layer.
16: end for
17: Calculate the gradient of the error.

3.2 Hubs

2© Re-training. After the inference, the data (ID) and class score (O) are
used together to improve the inference by re-training their DLMs (Ms). This
can be done on the data-processing servers of the local hub. To this end, differ-
ent learning strategies can be adopted. For instance, the participants (Rs) can
create, store, and update Ms after each inference, or after a sufficient amount
of ID has been collected. The design of specific learning strategies depends on
the inference type. Then, these new Ms are committed and stored in the local
repository, similar to the version control systems, of the local hub. Once created
and stored, it is assumed that these new Ms cannot be used to recreate the raw
ID of R. Therefore, all personal data remain safe as they do not leave the hub.
Furthermore, they are deleted after all Ms are updated.

The stored Ms are further deployed locally and assigned a cumulative score
S based on the O derived by validation of this model within new local inferences.
As a result, a new candidate model (MC) along with its performance score (S)
is then created and locked on the local hub. To allow knowledge sharing – one
of the key ingredients of the framework – this new MC is then evaluated by the
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Algorithm 2 Re-training (based on Distributed selective SGD)

Require: Choose initial parameters w(i) and learning rate α.
1: repeat
2: Get θ × |w(i)| parameters from the blockchain and replace the corresponding

local parameters.
3: Run stochastic gradient descent (SGD) on the local dataset and update the

local parameters w(i).
4: Compute gradient vector 4w(i) which is the vector of changes in all local pa-

rameters due to SGD.
5: Store4w(i) to the blockchain, where S is the set of indices of at most θu×|w(i)|

gradients
6: until an approximate minimum is obtained

participant peers operating at other sites, i.e., different hubs within a network.
To this end, the local hub publishes the changes (e.g., the difference between the
previous version of Mj and MC). Finally, the hub announces the update to the
entire network. The goal of this is to assure a fair validation of the MC before
it can be adopted as the new version of the Ms for target inference.

3.3 Parameter Blockchain
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Fig. 2. A BlockChain-based Deep Learning Network.
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3© Updates. I. Publish. First, the source participant (R(s)) ’advertises’
the new candidate model (Ms

C) by announcing the DLM updates to the entire
network. Then, the destination participants (R(d,i)), where i = 1 · · ·N denotes
the target hubs, are notified by their local hub that there is an update available
in the network. This can be achieved by the subscription pipeline they have with
their local hub. In case the updates are available, the participants can retrieve
and apply them to their working directory. Once Ms

(C) is adopted from the source

hub, R(d,i) starts its evaluation, quantified in terms of the scores (S(R(d,i),M
s
(C)

)).

Additionally, in order to leverage the new local data, the destination hubs can
also return the model updates to the source hub (obtained in a similar fashion as
when creating the MC). These, in turn can be used to construct the new model
at the source hub.

II. Validate. During the next stage, R(s) is to consolidate the feedback infor-
mation from the destination hubs. This can be achieved using time-constraints
(i.e., waiting for a pre-defined period of time to receive the feedback), and/or
when a target consensus is achieved. If the score for the MC is higher than for
the currently accepted model (Ms), i.e., S(i,Ms

C
) > S(i,Ms), Rs creates a new

model M(s+1), which is then published to all connected hubs, and committed to
their participants’ local repositories. In this way, the new baseline model for fu-
ture inferences is endorsed by the network. This process can be implemented via
modern control version systems in order to store and share the resulting model
configurations (e.g., the DLM topology, hyper-parameters, etc.) obtained after
new inferences. This is an important feature of our framework since it allows
the participants to rollback to the last consensual version of Ms+1, in case a
consensus did not take place within the network. Moreover, since the partici-
pants keep the list of all changes in their local repository, there is a promising
research approach in analyzing the metadata available in the updates applied to
the repository.

III. Consensus. In order to notarize and log the creation of the new mod-
els and their consensus processes within the network, R(s) is required to send a
transaction to a blockchain including information such as the timestamp of the
global update broadcast, a hash string that encapsulates the information about
the model update (e.g., differences in the weights, hyper-parameters, etc.), and
an encrypted data field signed by R(s) containing information such as the pub-
lic IDs of the participants that took part in the consensus process and their
correspondent feedback scores. This transaction on the blockchain is necessary
to allow participants within the network to prove/validate how models were
created, who participated in their consensus process, and when did those trans-
action take place. It is also important to highlight that the hash string included
in this transaction is useful to check and confirm that the models acquired by
participants are indeed the version agreed upon by the network, and not a cor-
rupted version from a third-party agent. In addition, the encrypted data field
signed by R(s) contain sufficient information to allow the users to confirm their
participation in the consensus process and check that R(s) was not biased at the
moment of promoting M(j) . This information is readable by any participant in
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the network, since they know the public identifier (i.e., public key) of R(s). By
contrast, the peers connected to the blockchain but not members of the private
clinical network do not have the means to decrypt this information or identify
the nodes involved in the consensus process. This is because all required pub-
lic/private keys remain within the boundaries of the clinical private network.
Finally, note that the whole consensus reaching process could have been im-
plemented directly on the blockchain via smart contracts’ in order to prevent
intruders from ’attacking’ the network; yet, we assume here that the network
access is protected.

4 Evaluation

4.1 Datasets and learning objectives

(A) Modern smartphone accelerometers are tri-axial.

( B ) Walking  

( C ) Jogging

( D ) Stairs (Ascending)

Fig. 3. (A)Modern smartphone accelerometers are tri-axial. (B-D) Accelerometer
graphs for three dynamic activities.

As Figure 3, we consider a scenario where smartphone users want to train a
motion-based activity classifier without revealing their data to others. To test the
algorithms, we use the WISDM Human Activity Recognition dataset, which is a
collection of accelerometer data on an Android phone by 35 subjects performing
6 activities (walking, jogging, walking upstairs, walking downstairs, sitting and
standing). These subjects carried an Android phone in their front pants leg
pocket while were asked to perform each one of these activities for specific periods
of time. Various time domain variables were extracted from the signal, and we
consider the statistical measures obtained for every 10 seconds of accelerometer
samples as the d = 43 dimensional features in our models. Our final sample
contains 5, 418 accelerometer traces from 35 users, with on average 150.504 traces
per user and standard deviation of 44.73.
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4.2 Computing framework

We use Torch7 and Torch7 nn packages. This popular deep-learning library has
been used and extended by major Internet companies such as Facebook.

4.3 Neural network architectures

Fig. 4. The architecture of the two-layer feed-forward network.

We used a Multi-Layer Perceptron as the supervised learning algorithm for
recognising activity using accelerometer traces. A Multi-Layer Perceptron or
MLP is a type of feed-forward Artificial Neural Network that consists of two
layers, input and output, and one or more hidden layers between these two
layers. The input layer is passive and merely receives the data, while both hidden
and output layers actively process the data. The output layer also produces the
results. Figure 4 shows a graphical representation of a MLP with a single hidden
layer. Each node in a layer is connected to all the nodes in the previous layer.
Training this structure is equivalent to finding proper weights and bias for all the
connections between consecutive layers such that a desired output is generated
for a corresponding input.
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4.4 Experimental setup

We set up a Multilayer Perceptron with 2 layers for activity recognition, including
1 hidden layer with 128 nodes and 1 logistic regression layer, resulting in 6, 406
parameters to be determined during training. We construct the input layer using
the statistical measures of users’ accelerometer traces. Because of the sensitivity
learning stages to feature scaling we normalise all statistical measures to have
zero mean and unit standard deviation. In the output layer each unit corresponds
to an activity inference class, such that unit states can be interpreted as posterior
probabilities.

All training procedures were implemented in python using the Theano deep
learning library. The training and testing were performed with 5-fold cross val-
idation, using early stopping as well as l2-regularisation to prevent overfitting.
Each neurons weight in the shared and local models was initialised randomly
from N(0, 1)/

√
2.0/n, where n is the number of its inputs, and biases were all

initialised to zero. Parameters in the personal model were initialised to the val-
ues obtained in the shared model. Finally, we used grid search to determine
the optimal values of the hyper-parameters, setting the learning rate to 0.05
for the shared model and to 0.001 for the local and personal models, and the
l2-regularisation strength to 1e−5 for all the models. The training epochs were
set to 1000 in all models, while the batch size was set equal to the size of the
training sets in the shared model, and to 1 (online learning) in the local and
personal ones. The reasons behind this are the small size of the dataset, and
the availability of the training samples in a real scenario (samples for the shared
model can be assumed to be all available for training, whereas samples in the
local and personal models become available for training as time goes by).

We repeated the experiment for each participant, using 5-fold cross-validation
and different number of samples to train the local and personal models. In each
simulation of every user, we incremented in 1 the number of samples used for
training, and also incremented in 1 the samples used for validation until reaching
60% of samples for training and 20% for validation, respectively.

4.5 Results

Results show that the effect of training or retraining a model with few samples
from the individual under test produces worse predictions than using samples
from other individuals (shared model). That is, while the model is adapting to
the new scenario, the performance of the prediction slightly drops. However,
when more samples (20 on average or more) are used to retrain this shared
model, the accuracy of the prediction exceeds the accuracy obtained with the
shared model itself. Specifically, the accuracy increases with increments in the
number of samples used for retraining the model. That is, the more local samples
considered to retrain the model, the more local it becomes for the considered
individual. However, although the improvement on the accuracy with the incre-
ment of the number of samples is also shared with the local model, more samples
per individual are required for training a model from scratch (local model) in
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order to obtain the same accuracy than when starting from a shared model. We
also observe that, after on average 163 samples, the local model performs better
than the personal model. This means that the user would need to perform and
label, on average, 163 activities in order to get a local model that outperforms
her personal one. However, this is not significant, since there is one unique user
in the dataset with that number of samples or higher available for training. In
summary,

i) retraining a shared model locally using 20 or more samples from the user
increases the accuracy with respect to that obtained with the shared model,
and

ii) to obtain the same accuracy when training a model from scratch using only
local samples, more than 150 training samples are required on average.

5 Conclusions and Future Work

Creating and training of deep learning models have been a computationally-
hungry process. So the adoption of these models in embedded devices has been
a challenging task, especially for low-cost mobile devices. Federated learning, one
decentralized approach, learns a shared model by aggregating locally-computed
updates, and leaves the training data distributed on the mobile devices. The fed-
erated learning network interconnecting the participants’ devices is not public.
Thus, it requires a permission of one or several parties to join and start con-
tributing to the deep learning process. We understand that some form of trust
is required in the institutions that deal with a sensitive task.

In this paper we proposed the first deep learning approach for tackling the
privacy issues in the use of personal data by mobile devices. We illustrated
this framework using activity recognition as an example which is conducted
simultaneously in multiple mobile devices. While the approach proposed here
offers the main principles for secure data and models sharing between multiple
mobile devices. To this end, we aim to collect the data from several parties in
order to test the framework in a data-exchange scenario. Then, we aim to run in
real time on private network to enable efficient and real-time learning of models.
For this, existing deep learning approaches will need to be adapted so that they
can efficiently be integrated with the blockchain technologies. Also, These are
topics of our ongoing research.
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